
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 1

Solving Uncompromising Problems with Lexicase
Selection

Thomas Helmuth, Lee Spector Member, IEEE, James Matheson

Abstract—We describe a broad class of problems, called
“uncompromising problems,” characterized by the requirement
that solutions must perform optimally on each of many test cases.
Many of the problems that have long motivated genetic program-
ming research, including the automation of many traditional pro-
gramming tasks, are uncompromising. We describe and analyze
the recently proposed “lexicase” parent selection algorition and
show that it can facilitate the solution of uncompromising prob-
lems by genetic programming. Unlike most traditional parent
selection techniques, lexicase selection does not base selection on
a fitness value that is aggregated over all test cases; rather, it con-
siders test cases one at a time in random order. We present results
comparing lexicase selection to more traditional parent selection
methods, including standard tournament selection and implicit
fitness sharing, on four uncompromising problems: finding terms
in finite algebras, designing digital multipliers, counting words in
files, and performing symbolic regression of the factorial function.
We provide evidence that lexicase selection maintains higher
levels of population diversity than other selection methods, which
may partially explain its utility as a parent selection algorithm
in the context of uncompromising problems.

Index Terms—parent selection, lexicase selection, tournament
selection, genetic programming, PushGP.

I. INTRODUCTION

GENETIC programming problems generally involve test
cases that are used to determine the performance of

programs during evolution. While some classic genetic pro-
gramming problems, such as the artificial ant problem and the
lawnmower problem [1], involve only single test cases, most
others involve large numbers of tests. There are several ways
in which a genetic programming system can take multiple
test cases into consideration during parent selection—that is,
when determining which individuals to use as source material
when producing offspring for the next generation—and the
best choice may depend on the type of problem being solved.

For some problems it may be be appropriate to use methods
that seek “compromises” among the different test cases. For

Manuscript received November 3, 2013; revised April 15, 2014 and August
5, 2014. This material is based upon work supported by the National Science
Foundation under Grants No. 1017817, 1129139, and 1331283. Any opinions,
findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

T. Helmuth is a doctoral student in the Department of Computer Sci-
ence, University of Massachusetts, Amherst, MA, 01003 USA e-mail: thel-
muth@cs.umass.edu.

L. Spector is with Hampshire College, Amherest, MA 01002 USA email:
lspector@hampshire.edu.

J. Matheson is a graduate of Hampshire College.
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

example, we can imagine a problem involving control of a
simulated wind turbine in which some test cases focus on
performance in low wind conditions while others focus on
performance in high wind conditions. It may not be possible to
optimize performance on all of these test cases simultaneously,
and some sort of compromise may therefore be necessary.
Many common parent selection approaches, such as tourna-
ment selection, introduce compromises between test cases by
aggregating the performance of an individual on those test
cases into a single fitness value. The method of compromise
may be as simple as summing the test case errors, or their
squares, into a single error value; more complex methods such
as implicit fitness sharing [2] dynamically weight test cases
based on population statistics before aggregating them.

By contrast, we wish to consider what we call “uncompro-
mising” problems: problems for which any acceptable solution
must perform as well on each test case as it is possible to
perform on that test case; that is, an uncompromising problem
is a problem for which it is not acceptable for a solution
to perform sub-optimally on any one test case in exchange
for good performance on others. More formally, consider a
problem defined by the set of test cases T where the set of
programs in the search space is P and pj(ti) is the error
produced by program pj ∈ P on test case ti ∈ T with
lower error being better. This problem is uncompromising if a
program p ∈ P would be considered a solution to the problem
if and only if p(ti) ≤ pj(ti) for all ti ∈ T and pj ∈ P .

While this might at first appear to be a narrow group of
problems, we believe that many important problems fall into
this class. For example, all of the Boolean function induction
problems commonly used in the genetic programming liter-
ature are uncompromising (e.g. the multiplexer problems in
[1]), as are those symbolic regression problems for which a
program must achieve an error of zero on all test cases in order
to count as a solution. Other examples from mathematics,
which we discuss further below, are problems of finding
functional representations of terms in finite algebras; only
programs that perform optimally on all test cases count as
solutions to these problems.

Of possibly greater significance, the set of uncompromising
problems includes most “traditional programming” or “soft-
ware synthesis” problems, in which one seeks to automatically
produce general software (which may require the use of multi-
ple data types, conditionals, and loops) from specifications or
behavioral tests. The automation of traditional programming
has been presented as one of the primary goals for research
in genetic programming at least since Koza’s seminal 1992
book [1], and recent assessments of the state of the field

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 2

have highlighted both the importance and the difficulty of
these kinds of problems [3]. Most traditional programming
problems involve large numbers of test cases, and programs
count as solutions to these problems only if they pass all
tests1. Several recent projects at the intersection of genetic
programming and software engineering, on automatic program
repair and improvement, involve uncompromising problems
framed in terms of tests that must all pass for the system to
be considered successful [4], [5].

We note that uncompromising problems do not necessarily
require “perfect” (zero error) performance on every test case,
although problems that require perfect performance on every
test case are indeed uncompromising by definition. In this
context it is interesting to consider the perspective that Luke
and Panait put forward in their paper titled “Is the Perfect
the Enemy of the Good?” [6]. Luke and Panait argue that
comparisons of genetic programming techniques based on
solution counts could be misleading for types of problems in
which “ideal solutions” are unlikely to be found, and for which
one seeks a program with minimal—but probably not zero—
error. We have no quarrel with Luke and Panait on this point in
the context of such problems. But for many uncompromising
problems, including the problems that we consider in this
paper and for a great many potentially important applications
of genetic programming, programs that do not pass all tests do
not count as solutions. The value of a genetic programming
technique with respect to such problems can only be mean-
ingfully assessed in terms of the number of successes that it
produces.

In this paper we present a relatively new parent selection
algorithm, lexicase selection, which was originally proposed
for solving “modal problems” in which programs must per-
form qualitatively different actions on different test cases [7].
Here we expand the scope and analysis of lexicase selection
by giving evidence that it greatly improves genetic program-
ming’s ability to find solutions to uncompromising problems
compared to selection techniques that permit compromises
between test cases. We give a detailed description of the
lexicase selection algorithm and demonstrate its effectiveness
on four problems: the problem of finding discriminator terms
in finite algebras, the problem of designing digital multipliers,
the problem of replicating the core functionality of the “wc”
word-count utility program, and symbolic regression of the
factorial function. We give evidence that lexicase selection
also maintains high levels of population diversity, possibly
contributing to its utility as a parent selection algorithm.

The next section discusses the lexicase selection algorithm
and what differentiates it from other selection methods. We
then present a variety of related evolutionary computation
techniques. Section IV describes the design and implemen-
tation of our experiments, including the genetic programming
systems we apply, the problems we attempt to solve, and the
performance measures we use in our comparisons. Section V

1We note that for many large-scale software applications, it is not normal
or reasonable to expect all test cases to be passed. Indeed, most applications
are released with known bugs. Nonetheless, the goal of passing all test cases
is a useful approximation even for these cases, and is strictly required for
mission critical programs and in other programming contexts.

To select a parent for use in a genetic operation:
1) Initialize:

a) Set candidates to be the entire population.
b) Set cases to be a list of all of the test cases

in random order.
2) Loop:

a) Set candidates to be the subset of the
current candidates that have exactly the
best performance of any individual currently
in candidates for the first case in cases.

b) If candidates contains just a single indi-
vidual then return it.

c) If cases contains just a single test case then
return a randomly selected individual from
candidates.

d) Otherwise remove the first case from cases
and go to Loop.

Fig. 1. Pseudocode for the lexicase selection algorithm.

presents the results of our experiments comparing lexicase
selection to both standard tournament selection (at multiple
tournament sizes) and implicit fitness sharing.

II. LEXICASE SELECTION

Lexicase2 selection is a method for selecting individuals
from a population to serve as parents of new individuals. It
can be used any time that potential parents are assessed with
respect to multiple test cases.

The lexicase selection algorithm used here, which is called
“global pool, uniform random sequence, elitist lexicase parent
selection” in [7], is described in pseudocode in Figure 1. In
each parent selection event, the lexicase selection algorithm
first randomly orders the test cases. It then eliminates any indi-
viduals in the population that do not have the best performance
on the first test case.3 Assuming that more than one individual
remains, it then loops, eliminating any individuals from the
remaining candidates that do not have the best performance
on the second test case. This process continues until only
one individual remains and is selected, or until all test cases
have been used, in which case it randomly selects one of the
remaining individuals.

Lexicase selection sometimes selects individuals that per-
form well on a relatively small number of test cases. This
differs from most other selection algorithms, which select
individuals based on aggregations of performance on all test
cases. Lexicase selection may select individuals that perform
very poorly on some test cases if they excel on a combi-
nation of others. As such, lexicase often selects “specialist”
individuals that solve parts of the problem extremely well.
Although these individuals may have worse summed error
across all test cases, the hope is they will be able to reproduce

2The term “lexicase” has been used previously in unrelated work [8].
3This retention of only “the best” could be relaxed to retain all individuals

within some distance of the best, but the form of lexicase selection used here
is “elitist” in that it retains only the best.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 3

in ways that pass on their preeminence on certain cases while
improving with respect to others. In order to give every test
case equal selection pressure, each lexicase selection event
uses a randomly shuffled list of test cases to determine which
test cases are treated as most important.

Lexicase selection was originally developed for modal prob-
lems, where by “modal” we mean problems that require the
solution program to take dissimilar actions—that is, to have
different modes of operation—for different input test cases
[7]. For evolution to be successful on these problems, it must
produce programs or sections of programs that can perform
disparate actions; in particular, it must be able to emphasize
the requirements of different cases and combinations of cases
in its selection procedure. Tournament selection and related
methods do not do a good job here; more often, one or two of
the modes receive the majority of the attention of selection,
and others are neglected. Lexicase selection, on the other hand,
emphasizes different test cases with each selection event, and
therefore spreads the selection pressure more evenly between
the modes of operation required by the problem. Previous work
using lexicase selection has shown that it works well on a
simple modal symbolic regression problem [7] and the 2-bit
digital multiplier problem [9].

In the present paper, along with presenting much more
extensive tests and analysis, we further argue that lexicase
selection should be preferred for uncompromising problems,
whether or not they are modal. To see why, consider an
individual that performs extremely well on some of the test
cases, but has very high error on a few others. Selection
methods such as tournament selection that compute a fitness by
reducing the error vector to a single value (e.g. by summation)
will rarely if ever select this individual if other individuals exist
with mediocre error on all test cases. For uncompromising
problems, however, elite performance on any test case may
be important and worth propagating to the next generation
even if the individual in question performs relatively poorly
on many or even all other test cases. That is, we may often be
more interested in selecting an individual with some great and
some bad errors than an individual with all mediocre errors.
Lexicase selection will select an unbalanced individual when
the test cases at which it excels come near the beginning of
the randomly ordered test case list. This may help to drive
evolution toward solutions to uncompromising problems.

The theoretical worst-case time complexity of the lexicase
selection algorithm for selecting parents each generation is
O(P 2T), where P is the population size and T is the number
of test cases. In comparison, traditional tournament selection
must sum the errors from every test case for every individual,
giving a time complexity of O(PT). While lexicase selection
is theoretically slower in the worst case, in practice it often
quickly eliminates many candidates and does not need to loop
over every test case, running much faster than the worst-case
analysis suggests. Additionally, if lexicase selection allows us
to more often solve problems than other selection methods, it
may be preferred even if it runs slower than those methods.
We examine the wall-clock times of our experimental runs in
Section V-B.

III. RELATED WORK

To some extent one can consider multiple test cases to be the
multiple objectives in a multiobjective optimization problem
[10]. The match is not perfect, however, because objectives
are goals that we want to achieve while test cases are tools
for measuring how well we meet our objectives. Nonetheless,
many of the techniques that have been developed to cope
with multiple objectives can also be applied to the problem
of coping with multiple test cases.

As far as we are aware, Langdon’s work on evolving data
structures is the only work that has used any type of Pareto-
aware selection where the test cases are used as the objectives
of the Pareto selection. In [11], Pareto tournaments are used for
selection in evolving queues. This problem uses six objectives,
five of which are based on the performance of the individual,
and the last of which is used to minimize memory use.
Similarly, [12] uses Pareto tournaments in evolving a list data
structure. This problem uses 21 normal test cases, and two
other objectives of memory and time. The Pareto tournaments
in these papers are modeled after those proposed in [13].

To our knowledge, modern multiobjective approaches such
as NSGA-II [14] and SPEA2 [15] have not been applied to
genetic programming problems where the test cases are treated
as objectives. These algorithms make assumptions about the
objectives that don’t usually hold for genetic programming
test cases. Multiobjective algorithms are typically used on
problems with very few objectives; often two objectives are
used, and rarely more than four or five. Genetic programming
problems frequently have many more test cases than this,
sometimes ranging from 50 to 100 or even more. With this
many objectives, Pareto-based algorithms may have trouble,
since most individuals will not dominate each other leading
to little performance information on which to base selection
[15], [16]. This “curse of dimensionality” must be overcome
to apply multiobjective algorithms to genetic programming
problems.

Besides multiobjective methods, other efforts have been
made to create parent selection techniques that give different
weights to different test cases during selection. Fitness sharing
[17] decreases selection pressure for individuals that are sim-
ilar to other individuals in the population. Each individual’s
fitness is penalized based on how many individuals are within a
specified distance, with closer individuals giving more penalty.
This requires the user to specify a distance metric between
individuals; in genetic programming, researchers have used
both a structural distance of programs themselves and a be-
havioral distance based on the outputs of the programs. Fitness
sharing using behavioral distance requires each individual to
be compared with each other individual in the population,
giving a time complexity of O(P 2T) for population size P
and T test cases. Undesirably, fitness sharing requires the user
to set three sensitive parameters that can significantly affect
its performance [18].

Implicit fitness sharing, first described in [19] and adapted
for genetic programming in [2], is a diversity preservation
technique that distributes reward among the individuals that
solve a test case, giving more reward for cases solved by fewer

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 4

individuals. In this way it is similar to fitness sharing, without
requiring the calculation of distances between individuals. It
is typically only applied to problems with binary test cases,
where an individual either solves a test case or does not.
Like fitness sharing, implicit fitness sharing produces scaled
fitnesses, with a tournament then used to select parents. The
implicit fitness sharing fitness function is defined as

fIFS(i) =
∑
t∈Ti

1

n(t)
(1)

where Ti ⊆ T is the set of test cases solved by individual i, and
n(t) is the number of individuals in the population that solve
test case t. Note that fitness is to be maximized in implicit
fitness sharing. Since the number of individuals solving each
test case is computed only once per generation, implicit fitness
sharing has a time complexity of O(PT), similar to traditional
tournament selection.

Implicit fitness sharing has been adapted for non-binary test
cases in [20]. Here, the raw fitness f(i, t) of individual i on
test case t falls in the range [0, 1] with 0 being worst and 1
being best. Implicit fitness sharing is then redefined as

fNBIFS(i) =
∑
t∈T

f(i, t)∑
i′∈P f(i

′, t)
(2)

This non-binary implicit fitness sharing still scales fitnesses
based on fitnesses of the rest of the population, and even
reduces to traditional implicit fitness sharing when fitnesses
are binary. The time complexity is still O(PT).

The “historically assessed hardness” technique uses a dif-
ferent generalization of implicit fitness sharing for non-binary
test cases, where fitness on each test case is scaled by the
success rate of the population [21].

“Co-solvability” fitness extends implicit fitness sharing to
consider pairs of test cases instead of single test cases [22].
Similarly to lexicase selection, this method emphasizes solving
subsets of the test cases. For each pair of test cases, reward
is given to each individual that solves both test cases, with
the reward being higher for pairs of cases not solved by many
individuals. The co-solvability fitness function is defined as

fCS(i) =
∑

tj ,tk∈Ti:j<k

1

n(tj , tk)

where Ti ⊆ T is the set of test cases solved by individual
i, and n(tj , tk) is the number of individuals that solve both
case tj and case tk. Although this enhancement to implicit
fitness sharing shares some motivations with lexicase selection,
it only considers pairs of test cases, whereas lexicase selection
considers prioritized lists of all test cases. This method has
only been described for binary test cases, and it does not
have an obvious generalization for non-binary test cases.
Calculating co-solvability fitness requires each pair of test
cases to be considered for each member of the population,
giving a time complexity of O(PT 2).

IV. METHODS

In order to test the utility of lexicase selection on uncompro-
mising problems, we used it in experiments with two different

genetic programming systems and on four different problems.
Here we present the GP systems, problems, and methods used
in our experiments.

In our experiments, we compare lexicase selection to stan-
dard tournament parent selection. In tournament selection with
tournament size n, n individuals are randomly selected from
the population, and the individual with the lowest total error
is selected to be the parent. We also present results using
implicit fitness sharing (IFS), which scales fitnesses and then
performs standard tournaments using that scaled fitness4. For
the finite algebras problem, which has binary errors, we use
the standard IFS fitness function given in Eq. (1). For the
factorial problem and the wc problem, which have non-binary
errors, we use the modified non-binary IFS fitness function
given in Eq. (2). For both tournament selection and IFS, we
present data for a variety of tournament sizes that span the
range commonly used in the literature. The specific set of
tournament sizes is not identical for each experiment, although
it always includes low, medium and high values; we sampled
the range of tournament sizes more sparsely for experiments
that required greater computational resources. Note also that
within each experiment—that is, for each problem—the same
set of tournament sizes is used across all conditions.

A. Genetic Programming Systems

We use two different genetic programming systems in this
paper: a tree-based genetic programming system and PushGP.
For the finite algebras problem we use the tree-based system,
which provides a natural representation for the problem, since
it searches for a function composed of nested calls to a
single algebraic operator. For the other three problems we
use PushGP since it allows more expressive programs to be
evolved than can easily be represented in most tree-based
genetic programming systems. The digital multiplier and wc
problems require evolved programs to return multiple outputs,
which is not easy to do in the functional representations of
most tree-based systems. Additionally, the factorial and wc
problems require a large range of expressive instructions not
easily implemented in tree-based systems, such as those that
allow for iteration and multiple data types. We believe the use
of different genetic programming systems depending on the
requirements of the problem is not only reasonable, but shows
that our conclusions are not limited to a single representation.

The standard tree-based genetic programming system used
here is designed in the style of Koza’s 1992 system [1]. Pro-
grams are Lisp-style symbolic expressions in prefix notation,
represented internally as trees. Random trees are generated
using the ramped half-and-half algorithm [1]. We use standard
tree-replacement mutation and crossover, without any biases
in the selection of nodes to be mutated or used in crossover.

The second genetic programming system, PushGP, evolves
programs expressed in the Push programming language. Push
is a stack-based language that was designed specifically for
use in genetic programming systems as the language in which
evolving programs are expressed [23], [24], [25]. It is a

4Time and resource constraints did not permit the inclusion of IFS results
for the digital multiplier problem, which is computationally expensive.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 5

postfix language in which literals, when encountered by the
interpreter, are pushed onto data stacks, and instructions, when
encountered by the interpreter, act on data taken from stacks
and return results on stacks.

The Push interpreter uses a separate stack for each data
type. Instructions take their arguments (if any) from stacks of
the appropriate types and they leave their results (if any) on
stacks of the appropriate types. This allows instructions and
literals to be freely intermixed regardless of type while still
ensuring execution safety. The convention in Push regarding
instructions that are executed in contexts that provide insuffi-
cient arguments on the relevant stacks is that these instructions
act as “no-ops”; that is, they do nothing.

In the PushGP runs in this paper we only use the genetic
operator ULTRA, which stands for “Uniform Linear Trans-
formation with Repair and Alternation” [26], [9]5. ULTRA
creates a child from two parent programs by treating them
as linear sequences and traversing them in parallel while
copying program elements from one parent or the other to the
child. The ULTRA “alternation rate” parameter specifies the
probability of alternating between source parents during the
traversal, while the “alignment deviation” parameter specifies
the standard deviation of random index offsets that may occur
during alternation. The ULTRA “mutation rate” parameter
specifies the probability of each element being mutated (re-
placed with another random element) during a subsequent
traversal of the child program.

Push and PushGP implementations exist in C++, Java,
JavaScript, Python, Common Lisp, Clojure, and Scheme,
among other languages. Many of these are available for free
download from the Push project page.6 The results presented
below were obtained using Clojush, the Clojure implementa-
tion of PushGP.7

B. Problems

We used the tree genetic programming and PushGP systems
to test lexicase selection on four problems: a problem in
pure mathematics related to finite algebras, a boolean digital
multiplier problem, a factorial symbolic regression problem,
and a traditional programming problem called wc (for “word
count”). The genetic programming parameters that we used
in our experiments are presented in Table I.8 We varied some
parameters, such as population size, maximum generations,
and maximum program sizes, for different problems based par-
tially on exploratory runs for the problems and partially on our

5The ULTRA operator used here is essentially that described in [9].
The version described in [26] and also used here was intended to pad
the shorter program with no-op instructions that would later be re-
moved, but in fact the padding rarely occurred. See erratum notice:
http://hampshire.edu/lspector/pubs/spector-gptp-2013-preprint-erratum.pdf

6http://pushlanguage.org
7https://github.com/lspector/Clojush
8We conducted our runs over a period of time during which we made

minor changes to our implementation of ULTRA. For all wc problem runs
and for the lexicase and size 7 tournament digital multiplier problem runs,
empty pairs of parentheses were removed at the end of ULTRA. In addition,
for the wc problem runs parentheses could be added or removed only by
ULTRA’s crossover and repair steps, but not by its mutation step. We have
found no evidence that either of these changes has any meaningful impact on
the PushGP algorithm for the problems studied here.

TABLE I
PARAMETERS FOR OUR EXPERIMENTS. FA IS FOR THE FINITE ALGEBRAS
PROBLEM, DM IS FOR THE DIGITAL MULTIPLIER PROBLEM, FACT IS FOR
THE FACTORIAL SYMBOLIC REGRESSION PROBLEM, AND WC IS FOR THE
TRADITIONAL PROGRAMMING WORD COUNT PROBLEM. IN THE SYSTEM

ROW, TREE IS THE TREE-BASED GENETIC PROGRAMMING SYSTEM
DESCRIBED IN SECTION IV-A, AND PUSH IS THE PUSHGP SYSTEM.

Problem FA DM Fact wc

System Tree Push Push Push
Runs Per Condition 100 100 100 200
Number of Test Cases 27 64 10 242
Population Size 1000 5000 1000 1000
Max Generations 1000 4000 500 300
Max Program Size 1000 1000 500 1000
Max Initial Program Size - 400 100 400
Expected Initial Program Size 50 - - -
Max Initial Program Depth 20 - - -
Expected Mutation Code Size 10 - - -
Max Mutation Code Depth 10 - - -
Max Instructions Executed - 1000 1000 2000
Crossover Probability 50% 0% 0% 0%
Mutation Probability 50% 0% 0% 0%
ULTRA Probability 0% 100% 100% 100%
ULTRA Mutation Rate - 0.01 0.05 0.01
ULTRA Alternation Rate - 0.01 0.05 0.01
ULTRA Alignment Deviation - 10 10 10

TABLE II
ALGEBRAIC OPERATORS DEFINING THE FINITE ALGEBRAS IN THIS PAPER.

A1 ∗ 0 1 2

0 2 1 2
1 1 0 0
2 0 0 1

A2 ∗ 0 1 2

0 2 0 2
1 1 0 2
2 1 2 1

prior experiments with the problems; none were particularly
optimized.

Previous work in genetic programming for finite algebras
has created human-competitive results (and won a “Humies”
Gold Prize) [27]. Here, we borrow a problem from that work to
use as a benchmark. This problem, which we will simply call
the finite algebras problem, is to find a discriminator term in
a three-element, single-operator algebra. A discriminator term
[28] is a ternary function t(x, y, z) satisfying

t(x, y, z) =

{
x if x 6= y

z if x = y

The algebras presented here only have one operator ∗, which
is therefore the only function in our function set. Since we
are evolving ternary terms, we use the three terminals x, y,
and z. Each test case for this problem uses values for x, y,
and z chosen from the set {0, 1, 2}, giving 27 test cases. If an
evolved program correctly solves a particular case it gets an
error of 0 for that case, and otherwise gets an error of 1.

To test the differences between lexicase, tournament, and
implicit fitness sharing (IFS) parent selection methods on
this problem, we used the tree genetic programming system
described in Section IV-A to search for discriminator terms for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 6

TABLE III
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, xor, invertF irstThenAnd,
dup, swap, rot

Input/Output in1, ..., in2n, out1, ..., out2n

the finite algebras A1 and A2 given in Table II. We explore the
parameter space of tournament sizes by using sizes between
2 and 10. The finite algebras problem is uncompromising, in
that we are only interested in solutions with zero error. Runs
that do not find perfect solutions do not tell us anything about
the finite algebras themselves.

The digital multiplier problem requires the system to
create a program representing a digital circuit that multiplies
two binary numbers. An n-bit digital multiplier circuit takes
two n-bit numbers represented in binary by booleans as input
and multiplies them together to create a 2n-bit number as
output. This problem was recommended by the authors of
recent articles on genetic programming benchmarks as an
alternative to other boolean problems such as multiplexer and
parity, since it offers difficulties not seen in those problems
[29], [3]. In particular, it forces the evolving programs to
output multiple values and allows for trials of problems of
varying sizes without constraining fitness values to powers
of two. Previous work has shown PushGP’s ability to evolve
2-bit digital multipliers [9]. Here, we use PushGP to evolve
solutions to the more difficult 3-bit digital multiplier problem.

The boolean n-bit digital multiplier problem uses each
possible assignment of 0 and 1 to each of the 2n input bits
to produce 22n test cases, each with 2n output bits. The
fitness (error) of each test case is the number of bits that
the program gets wrong compared to the desired output bits.
Thus the error for a test case will be an integer between 0
and 2n. In our implementation of the problem in PushGP,
we provide one input instruction for each input bit, and one
output instruction for each output bit. Each time an output
instruction is called, the output for that bit is overwritten by
the top item on the boolean stack so that only the last such
instruction executed affects the behavior of the program. If a
specific output instruction is never called within the program,
that bit is considered wrong in each test case, but no further
penalty is given.

Beyond the input and output instructions, we use the
boolean stack instructions found in the top row of Table III.
The first four of these are the instructions recommended by
Walker and Miller [30], each popping the top two items on the
boolean stack and pushing the result onto the boolean stack.
The other three are typical stack manipulation instructions
that are often used in Push. The booleanDup instruction
duplicates the top item on the boolean stack, the booleanSwap
instruction swaps the top two items on the boolean stack,
and booleanRot moves the third item on the boolean stack
to the top of the stack. Our random code generator chooses
to either use a boolean stack instruction or an input/output
instruction randomly, and then selects from the chosen cate-

gory uniformly. This ensures that for random code, the ratio of
boolean stack instructions to input/output instructions remains
50% for different sizes of the problem, even though there are
more input and output instructions in larger versions of the
problem. The digital multiplier problem is uncompromising,
since programs that do not achieve zero error on every test
case are not of interest.

The factorial symbolic regression problem is an integer
symbolic regression problem with one input and one output,
in which the output should be the factorial of the input. Our
version uses 10 input test cases, ranging from 1 to 10 (with
outputs ranging from 1! = 1 to 10! = 3628800).

When using normal summed tournament selection some
test cases will have a much larger impact on an individual’s
fitness than others, since the larger test cases will likely have
much larger error magnitude than the smaller test cases. To
try to make the influence of test cases more even, we also
tested tournament selection using normalized error values in
the range [0, 1]. Additionally, we used normalization when
using implicit fitness sharing, since it requires an error in [0, 1].

We tested three different methods of normalization, each
of which returns 0 if the program returns the target output.
The first takes the raw error value et = |ct − yt| on each test
t, where ct is the correct output and yt is the output of the
program, and normalizes it to

et1 = 1− 1

et + 1
=

et
et + 1

(3)

This method is very similar to Koza’s adjusted fitness [1],
although adjusted fitness was used to scale the total error of an
individual for the use with fitness proportionate selection. The
second method, suggested for use with the factorial problem
in [31], normalizes the error as et2 = et

|ct|+|yt| . Although this
method creates a flatter normalization function with respect to
yt, it behaves oddly in that it is not symmetrical around yt =
ct. In fact, if ct is positive and yt is negative, the maximum
normalized error of 1.0 will be given even if yt and ct have a
relatively small absolute distance, where a smaller normalized
error will be given for an output of yt that is positive but with
a much larger absolute distance from ct. In order to obtain the
gentler normalization provided by et2, but without the odd
behavior near zero, we created a third method that behaves
exactly like et2 when ct ≤ yt, but is symmetrical when ct >
yt. This uses the normalization function et3 = et

et+2|ct|+1 ,
where the addition of 1 in the denominator avoids issues when
et and ct are zero.

Note that the relative magnitude of error values between
test cases does not affect lexicase selection; it only takes into
account differences within a test case. Therefore we did not
need to test lexicase selection using normalization of error
values. This nice side-effect of using lexicase selection means
a researcher need not consider differences in magnitudes of
error values or options for normalization across test cases.

For this problem we used a Push instruction set that allowed
for the manipulation of integers, boolean values, and the exe-
cution stack (to permit conditional branches and recursion), but
we did not include Push’s high-level iteration instructions that
allow for trivial solutions. Specifically we used the constants

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 7

0 and 1; an input instruction in; the boolean instructions
and, dup, eq, fromInteger, not, or, pop, rot, and swap;
the integer instructions add, div, dup, eq, fromBoolean,
greaterThan (which pushes a boolean), lessThan, mod,
mult, pop, rot, sub, and swap; and the exec instructions
dup, eq, if , noop, pop, rot, swap, when, and the combinators
k, s, and y (see [25]).

The wc problem is a recently proposed traditional program-
ming benchmark problem for genetic programming [32]. The
objective of the wc problem is to find a program that takes as
input a file and outputs the number of characters, words, and
newlines in the file. Such a program mirrors the functionality
of the Unix word count utility program wc. This problem
requires programming concepts used frequently by human
programmers but rarely by genetic programming, including
the use of multiple data types, multiple outputs, and control
flow manipulation. We use the PushGP implementation of the
wc problem found in [32], and supplement the runs presented
there with runs using additional tournament sizes and IFS.

With the wc problem, we wish to find programs that
perfectly count the numbers of characters, words, and newlines
in a file. This problem is uncompromising in that a program
that mostly passes the test cases does not constitute a useful
word count program. To keep the problem tractable, we only
require that the program work on files that contain at most 100
characters. Since we cannot use every single file containing at
most 100 characters as a test case input, we follow [32] and
use a combination of random and prescribed inputs for each
run. In each run, 200 of the inputs are random strings of length
at most 100; 20 of the inputs are random strings of length at
most 100 that are guaranteed to end in a newline, and 22 of
the inputs are prescribed strings that cover edge cases, such
as very short and very long files. For a program to count as
a success, it must also achieve zero error on a withheld set
of test data to show that it generalizes to unseen inputs. This
withheld test set contains 500 random strings and 50 random
strings ending in newlines, all at most 100 characters long.

Each test case has three expected outputs, for the counts
of the characters, words, and newlines in the input file. We
therefore assign three error values per test case, with each error
being the absolute difference between the expected output and
the program’s output. If a program does not return a particular
output, it receives a penalty error of 100, 000.

Like many traditional programming problems, the wc prob-
lem requires a wide and varied set of instructions. We use
an instruction set with 71 instructions and ERCs; the specific
instructions are exactly the same as the ones recommended
in [32]. These instructions include many standard Push stack
manipulation instructions for the string, integer, boolean, and
exec stacks. As with the factorial problem, the exec stack
instructions here allow for a variety of control flow constructs,
including looping, conditionals, and recursion. Additionally,
two instructions allow for character and line input, and three
output instructions store integers to use as outputs for number
of characters, words, or newlines. The instruction set also
supports tagging of code, integers, and strings, allowing pro-
grams to store values and modules that can be retrieved later
[33]. Finally, three ERCs allow random code to create integer

literals, single-character whitespace string literals, and single-
character non-whitespace string literals.

For this problem we compare lexicase selection to tourna-
ments with sizes 3, 5, and 7, as well as IFS with the same
tournament sizes. Since the wc problem returns non-binary
errors, we use the non-binary IFS formula from Eq. (2). Since
this formula requires fitnesses in the range [0, 1], we normalize
errors by dividing them by 100, 000, which is the penalty error
given when no output is produced by a program, and for IFS
is also the largest error a program can receive if it does return
an output.

C. Performance Measures

Since we are primarily interested in the extent to which
selection algorithms help to evolve programs with zero error
on every test case, we focus our results on measures of these
successes, in particular the success rate (i.e. the percent of
runs that find programs with zero error). We test the statistical
significance and reliability of the difference in success rates
found using different selection methods by using Fisher’s exact
test (with significance level of 0.05) and confidence intervals
of the difference in success rates.

We use the same population size and maximum number
of generations for each parent selection algorithm, result-
ing in the same maximum number of program evaluations.
While this does not fully ensure that every run will consume
the same computational resources, it is a commonly used
approximation. We additionally present the wall-clock time
consumed by each set of runs, which can provide information
about differences in computational resources that stem from
processes other than program evaluation, including parent
selection.

In order to measure the time each algorithm used in our
experiments, we recorded the wall-clock times used by each
run as well as the number of generations executed, to calculate
the time used per generation. Most of our runs were performed
on a cluster of machines with varying computational resources,
although the finite algebras runs were performed on a 2012
MacBook Pro. Since we cannot prescribe which runs are
performed on which machines in the cluster, some sets of
runs may have randomly run on faster machines than others.
Additionally, since we share the cluster with other users,
we cannot guarantee a consistent load; some runs may have
shared a machine with other processes where others did
not. Finally, while we did our best to implement efficient
algorithms, none of them were specifically optimized, and
faster implementations may be possible. Taking all of this
into consideration, small differences in observed wall-clock
times do not necessarily indicate significant differences in run
times; we are only really interested in orders of magnitude
distinctions.

V. EXPERIMENTAL RESULTS

Here we report the results of our experiments, including
differences in performance, execution times, and population
diversity.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 8

TABLE IV
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A1

WITH 100 RUNS IN EACH CONDITION. IFS GIVES RESULTS USING
IMPLICIT FITNESS SHARING PARENT SELECTION. THE SUCCESS RATE OF

EACH SET OF RUNS USING TOURNAMENT SELECTION OR IMPLICIT
FITNESS SHARING IS COMPARED WITH THE SUCCESS RATE USING

LEXICASE SELECTION; WE PRESENT THAT DIFFERENCE AND A 95%
CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent
Selection
Method

Tourna-
ment
Size

Success
Rate

Difference in
Success Rate
with Lexicase

95% Confidence
Interval of Dif-
ference in Suc-
cess Rate

Lexicase - 0.99 - -
Tournament 2 0.01 0.98 [0.923, 0.999]
Tournament 3 0.01 0.98 [0.923, 0.999]
Tournament 4 0.05 0.94 [0.869, 0.975]
Tournament 5 0.02 0.97 [0.909, 0.993]
Tournament 6 0.04 0.95 [0.882, 0.981]
Tournament 7 0.03 0.96 [0.895, 0.987]
Tournament 8 0.06 0.93 [0.856, 0.968]
Tournament 9 0.07 0.92 [0.843, 0.961]
Tournament 10 0.04 0.95 [0.882, 0.981]
IFS 2 0.13 0.86 [0.771, 0.915]
IFS 3 0.43 0.56 [0.449, 0.649]
IFS 4 0.58 0.41 [0.302, 0.501]
IFS 5 0.55 0.44 [0.331, 0.532]
IFS 6 0.64 0.35 [0.246, 0.440]
IFS 7 0.57 0.42 [0.312, 0.512]
IFS 8 0.64 0.35 [0.246, 0.440]
IFS 9 0.71 0.28 [0.182, 0.367]
IFS 10 0.73 0.26 [0.164, 0.346]

A. Performance

Table IV presents the results of our runs on the finite alge-
bras problem using algebra A1. The runs using lexicase se-
lection found solutions in almost every run, and outperformed
tournament selection and IFS. The best non-lexicase run used
IFS with tournament size of 10. Comparing lexicase selection
with any non-lexicase method, Fisher’s exact test gives a p-
value less than 0.0001, so we can reject the null hypothesis
at the 0.05 significance level that there is no association
between selection method and the number of successes. Most
of the tournament and IFS runs show substantial differences in
success rate when compared with the lexicase selection runs,
and even the best IFS conditions are significantly worse than
lexicase selection.

The results of our runs on the finite algebras problem using
algebra A2 are presented in Table V. The runs using lexicase
selection found solutions in every run, with the success rates
for tournament selection and IFS also being higher than for
algebra A1. For this algebra, IFS with tournament size 8 had
the highest success rate; Fisher’s exact test for lexicase and
size 8 IFS gives a p-value of 0.0003, so we can reject the
null hypothesis at the 0.05 significance level. Since size 8
IFS performed best out of the tournament and IFS runs, this
rejection of the null hypothesis holds when comparing any
of these runs to lexicase selection. The differences in success
rate and their 95% confidence intervals indicate that lexicase
selection performed vastly better than tournament selection

TABLE V
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A2

WITH 100 RUNS IN EACH CONDITION. IFS GIVES RESULTS USING
IMPLICIT FITNESS SHARING PARENT SELECTION. THE SUCCESS RATE OF

EACH SET OF RUNS USING TOURNAMENT SELECTION OR IMPLICIT
FITNESS SHARING IS COMPARED WITH THE SUCCESS RATE USING

LEXICASE SELECTION; WE PRESENT THAT DIFFERENCE AND A 95%
CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent
Selection
Method

Tourna-
ment
Size

Success
Rate

Difference in
Success Rate
with Lexicase

95% Confidence
Interval of Dif-
ference in Suc-
cess Rate

Lexicase - 1.0 - -
Tournament 2 0 1.0 [0.953, 1.0]
Tournament 3 0.06 0.94 [0.869, 0.974]
Tournament 4 0.12 0.88 [0.795, 0.930]
Tournament 5 0.14 0.86 [0.772, 0.914]
Tournament 6 0.16 0.84 [0.749, 0.898]
Tournament 7 0.17 0.83 [0.737, 0.890]
Tournament 8 0.10 0.90 [0.819, 0.946]
Tournament 9 0.26 0.74 [0.638, 0.813]
Tournament 10 0.18 0.82 [0.726, 0.882]
IFS 2 0.28 0.72 [0.616, 0.795]
IFS 3 0.61 0.39 [0.286, 0.479]
IFS 4 0.74 0.26 [0.167, 0.343]
IFS 5 0.83 0.17 [0.090, 0.243]
IFS 6 0.84 0.16 [0.082, 0.232]
IFS 7 0.83 0.17 [0.090, 0.243]
IFS 8 0.88 0.12 [0.050, 0.185]
IFS 9 0.79 0.21 [0.124, 0.288]
IFS 10 0.72 0.28 [0.185, 0.364]

TABLE VI
RESULTS ON THE 3-BIT DIGITAL MULTIPLIER PROBLEM WITH 100 RUNS
IN EACH CONDITION. THE SUCCESS RATE OF EACH SET OF RUNS USING

TOURNAMENT SELECTION IS COMPARED WITH THE SUCCESS RATE USING
LEXICASE SELECTION; WE PRESENT THAT DIFFERENCE AND A 95%

CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent
Selection
Method

Tourna-
ment
Size

Success
Rate

Difference in
Success Rate
with Lexicase

95% Confidence
Interval of Dif-
ference in Suc-
cess Rate

Lexicase - 1.0 - -
Tournament 2 0 1.0 [0.953, 1.0]
Tournament 4 0 1.0 [0.953, 1.0]
Tournament 6 0 1.0 [0.953, 1.0]
Tournament 7 0 1.0 [0.953, 1.0]
Tournament 8 0 1.0 [0.953, 1.0]

and moderately better than even the best of IFS setting.
Table VI presents our results on the 3-bit digital multiplier

problem. We compare lexicase selection with tournament
selection using various tournament sizes. On this problem,
PushGP with lexicase selection found successful programs
in every run, whereas tournament selection never found a
solution. A comparison of lexicase selection with each of
the tournament selection conditions using Fisher’s exact test
gives a p-value less than 0.0001, meaning we can reject the
null hypothesis of no association between selection method
and number of successes at the 0.05 significance level. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 9

TABLE VII
RESULTS ON THE FACTORIAL SYMBOLIC REGRESSION PROBLEM WITH

100 RUNS IN EACH CONDITION. NORMALIZED USES NORMALIZED
ERRORS WITH NORMAL TOURNAMENT SELECTION; IFS GIVES RESULTS

USING IMPLICIT FITNESS SHARING PARENT SELECTION. BOTH
NORMALIZED AND IFS USE THE NORMALIZATION FUNCTION et1 GIVEN IN
EQ. (3). THE SUCCESS RATE OF EACH SET OF RUNS USING TOURNAMENT

SELECTION OR IMPLICIT FITNESS SHARING IS COMPARED WITH THE
SUCCESS RATE USING LEXICASE SELECTION; WE PRESENT THAT

DIFFERENCE AND A 95% CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent
Selection
Method

Tourna-
ment
Size

Success
Rate

Difference in
Success Rate
with Lexicase

95% Confidence
Interval of Dif-
ference in Suc-
cess Rate

Lexicase - 0.51 - -
Tournament 2 0 0.51 [0.401, 0.599]
Tournament 4 0 0.51 [0.401, 0.599]
Tournament 6 0 0.51 [0.401, 0.599]
Tournament 8 0 0.51 [0.401, 0.599]
Normalized 2 0 0.51 [0.401, 0.599]
Normalized 4 0 0.51 [0.401, 0.599]
Normalized 6 0 0.51 [0.401, 0.599]
Normalized 8 0.01 0.50 [0.390, 0.591]
IFS 2 0 0.51 [0.401, 0.599]
IFS 4 0 0.51 [0.401, 0.599]
IFS 6 0 0.51 [0.401, 0.599]
IFS 8 0 0.51 [0.401, 0.599]

differences in success rate between lexicase selection and each
of the tournament sizes is obviously large. The results using
lexicase selection are much better than in [9], in which no
perfect solutions were found for the 3-bit digital multiplier
problem. This difference is likely because of the larger popu-
lation size and maximum generations used in this paper.

Table VII presents the results of our runs on the factorial
problem. We tested each of the three normalization methods,
both with and without IFS, using tournament sizes of 2, 4,
6, and 8. We only present normalized tournaments and IFS
using the normalization function et1 given in Eq. (3), since
neither of the other normalization methods resulted in more
than one successful program across all sets of runs using
them. Lexicase selection found successful programs in just
over half its runs, whereas none of the other selection methods
found more than one successful program. Comparing lexicase
selection with any of the tournament, normalized, and IFS sets
of runs, Fisher’s exact test gives a p-value less than 0.0001, so
we can reject the null hypothesis at the 0.05 significance level
that there is no association between selection method and the
number of successes. The differences in success rate between
the lexicase selection runs and all other runs are large, near
0.5.

The wc problem proved more difficult for lexicase selection
than any of the other problems presented here; results are in
Table VIII. Lexicase selection found 11 successful programs
that achieved zero error on both the training and withheld test
sets, whereas the other methods found none. When comparing
the lexicase runs to the tournament and IFS runs, Fisher’s
exact test gives a p-value of 0.001, indicating we can reject
the null hypothesis at the 0.05 significance level that there is no

TABLE VIII
RESULTS ON THE WC PROBLEM WITH 200 RUNS IN EACH CONDITION. IFS

GIVES RESULTS USING IMPLICIT FITNESS SHARING PARENT SELECTION.
THE SUCCESS RATE OF EACH SET OF RUNS USING TOURNAMENT

SELECTION OR IMPLICIT FITNESS SHARING IS COMPARED WITH THE
SUCCESS RATE USING LEXICASE SELECTION; WE PRESENT THAT

DIFFERENCE AND A 95% CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent
Selection
Method

Tourna-
ment
Size

Success
Rate

Difference in
Success Rate
with Lexicase

95% Confidence
Interval of Dif-
ference in Suc-
cess Rate

Lexicase - 0.055 - -
Tournament 3 0 0.055 [0.020, 0.088]
Tournament 5 0 0.055 [0.020, 0.088]
Tournament 7 0 0.055 [0.020, 0.088]
IFS 3 0 0.055 [0.020, 0.088]
IFS 5 0 0.055 [0.020, 0.088]
IFS 7 0 0.055 [0.020, 0.088]

association between parent selection method and the success
rate. The differences in success rate and the 95% confidence
intervals of those differences show that the effect of lexicase
selection on success rate is likely small but nonetheless mean-
ingful, particularly since it appears to be difference between
“no successes” and “occasional successes.”

B. Execution Times

We have shown that lexicase selection allows genetic
programming to find many more solutions than traditional
tournament selection or IFS on a variety of uncompromising
problems. Since the time complexity of lexicase selection is
worse than tournament selection and IFS, we expect it to be
slower, but not prohibitively so. Here we present the time used
by our runs to produce our results.

For each parent selection method, the mean time per genera-
tion did not vary much between different tournament sizes. For
each problem, Table IX presents the mean wall-clock time per
generation of the sets of runs that took the least and most time
for each selection method. Since we only performed one set
of runs for lexicase selection on each problem, only one time
is presented for both minimum and maximum. For example,
our one set of runs using lexicase selection on the A1 finite
algebras problem took 2.6 seconds per generation on average,
whereas the set of tournament selection runs using least time
took 1.2 seconds (using tournament size 2), and the most time
took 1.4 seconds (using tournament size 5).

For the finite algebras problem, runs using lexicase selection
took about twice as long per generation as those using tourna-
ment selection or IFS. For the 3-bit digital multiplier problem,
runs using lexicase selection were significantly slower than
those using tournament selection, about 7 times slower than
the longest tournament selection runs. This large increase in
time can be attributed to the large population size of 5000
we used for this problem, whereas we used a population
size of 1000 for all other problems. Since lexicase selection’s
time complexity is quadratic in the population size, we would
expect it to be comparatively slower for the larger population
size we used.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 10

TABLE IX
WALL-CLOCK TIMES FOR THE SHORTEST AND LONGEST MEAN TIME PER

GENERATION ACROSS SETS OF RUNS USING THE SAME PARENT SELECTION
METHOD AND DIFFERENT TOURNAMENT SIZES. DATA COMES FROM THE
SAME RUNS AS THOSE PRESENTED IN PREVIOUS RESULTS TABLES: A1

AND A2 ARE FOR THE FINITE ALGEBRAS PROBLEM USING ALGEBRAS A1

AND A2 RESPECTIVELY, DM IS FOR THE DIGITAL MULTIPLIER PROBLEM,
FACT IS FOR THE FACTORIAL PROBLEM, AND WC IS FOR THE WC

PROBLEM.

Problem Parent
Selection
Method

Minimum mean
time per genera-
tion (seconds)

Maximum mean
time per genera-
tion (seconds)

A1 Lexicase 2.6 2.6
Tournament 1.2 1.4
IFS 1.2 1.3

A2 Lexicase 2.5 2.5
Tournament 1.2 1.4
IFS 1.0 1.2

DM Lexicase 464 464
Tournament 25 71

Fact Lexicase 11.9 11.9
Tournament 5.4 6.7
Normalized 0.4 0.6
IFS 3.0 4.7

wc Lexicase 394 394
Tournament 142 295
IFS 136 229

For the factorial problem, lexicase selection is again the
slowest, taking about twice as long as tournament selection
and three times as long as IFS. The runs using tournament
selection on normalized errors ran surprisingly quickly; we
discovered that this is likely because many of the runs resulted
in populations of programs that contained a single instruction
that had no effect. This strange result can be explained by
the fact that with this normalization scheme, most random
programs do not achieve better error than a program that does
nothing and simply returns the input. Some, but not all, of
our runs using other normalization techniques both with and
without IFS had this problem, though even the ones with
longer execution times did not find more than 1 successful
program.

The mean generation lengths on the wc problem are at most
about 3 times longer when using lexicase selection than when
using tournament or IFS selections. For all methods times are
longer than for the other problems; this can be explained by a
combination of many more test cases and a larger maximum
number of instructions executed per execution.

All of our sets of runs using lexicase selection had longer
wall-clock times per generation than tournament selection or
IFS. But, for many of these problems the difference between
using lexicase selection and using tournament selection or IFS
is the difference between finding successful programs and not.
Additionally, many of the lexicase runs actually finished faster
than the other runs, since they found successful programs
earlier in the runs. Since the difference in wall-clock time
is not many orders of magnitude slower for any problem, we
think the benefits of using lexicase selection far outweigh the
extra cost in time.

C. Population Diversity

The results presented here raise the question of why lexicase
selection performs significantly better on uncompromising
problems than tournament selection or IFS. One hypothesis
is that the way lexicase selection emphasizes the selection
of individuals that are extremely good on at least a few
test cases but possibly not great on others allows runs using
lexicase selection to maintain higher levels of population
diversity than techniques that reduce fitnesses to a single
value. Although maintaining higher levels of diversity may
be helpful, it is also necessary to provide sufficient selection
pressure to exploit good programs in order to find better
ones; simply maintaining a diverse set of individuals does not
single-handedly help find a solution without pressure toward
the goal. This tension between exploration and exploitation
is well known in evolutionary algorithms. The fact that our
experiments using lexicase selection found many more solu-
tions than other methods suggests that it at least contributes
sufficient exploitative pressure toward the goal; we now wish
to investigate whether or not it also maintains higher levels of
diversity than the other methods.

Various measures of diversity have been proposed in the
genetic programming literature. Because we are primarily
interested in how a genetic programming population explores
the space of output vectors, we will focus on behavioral
diversity [34]. Here Jackson defines the behavior of a program
to be the vector of outputs it produces for the test case inputs.
The behavioral diversity of a population of programs is the
percent of distinct behavior vectors in the population. Jackson
shows that there is correlation, if not causation, between higher
levels of behavioral diversity and higher solution rates on a
variety of small benchmark problems [34].

We will explore whether the use of lexicase selection leads
to higher levels of behavioral diversity than tournament selec-
tion or IFS. IFS was designed to increase population diversity
by reducing the influence of a test case on an individual’s
fitness proportionately with the number of individuals in the
current population that solve it (or do well on it in the case
of non-binary IFS). We will present behavioral diversity data
from our finite algebras, factorial, and wc runs9. Since the
behavioral diversity plots for tournament selection or IFS runs
with different tournament sizes follow very similar trends, we
will only present a few tournament size settings from each
selection method to increase clarity.

Figures 2 and 3 plot the mean behavioral diversity at
each generation for the finite algebras problem on the A1

and A2 algebras respectively. We plot runs that use lexicase
selection, IFS with a range of tournament sizes, and size
9 tournament selection (which performed best out of the
tournament sizes on these problems). After the first 10 or so
generations, we see some separation between the plots. IFS
with tournament size of 3 shows the highest diversity for the
first 15 to 25 generations, after which point lexicase selection
maintains the highest diversity until almost all of its runs

9We finished our digital multiplier runs before deciding to measure
behavioral diversity, and could not redo those runs because they are too
computationally expensive.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 11

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 9

IFS 3

IFS 6

IFS 10

Fig. 2. Behavioral diversity for the A1 finite algebras problem. The numbers
beside runs indicate the tournament size used. The plot of lexicase selection
ends after every run has found a successful program; it becomes jagged before
it ends because there it averages only the few runs that have not yet succeeded.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 9

IFS 3

IFS 6

IFS 10

Fig. 3. Behavioral diversity for the A2 finite algebras problem. The numbers
beside runs indicate the tournament size used. The plot of lexicase selection
ends after every run has found a successful program; it becomes jagged before
it ends because there it averages only the few runs that have not yet succeeded.

have found solutions. Interestingly, IFS with tournament size
3 performed worse than the IFS runs with larger tournament
sizes presented in these figures. We believe this shows that
IFS with tournament size 3 maintained a low level of selection
pressure leading to higher diversity, but did not have enough
pressure to guide evolution toward successful programs as
readily. In each of these figures, size 9 tournament selection
had the lowest behavioral diversity during all but the first few
generations.

Figure 4 plots the mean behavioral diversity at each gen-
eration of our runs on the factorial problem. Unlike the plots
for the finite algebras problem, behavioral diversity remains

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 4

Tourney 8

Normalized 8

IFS 4

IFS 8

Fig. 4. Behavioral diversity for the factorial problem. The numbers beside
runs indicate the tournament size used.

0.00

0.25

0.50

0.75

1.00

0 100 200 300

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 3

Tourney 7

IFS 3

IFS 7

Fig. 5. Behavioral diversity for the wc problem. The numbers beside runs
indicate the tournament size used.

relatively low throughout these runs, never reaching higher
than 40%. Whereas the finite algebras runs were capped at
100 generations, these runs were allowed 500 generations; it
appears that behavioral diversity did not change much in any
set of runs after the first 100 generations. Lexicase selection
maintained the highest diversity. Surprisingly, tournament se-
lection maintained higher diversity than IFS. For both, runs
with higher tournament sizes had higher diversity, which goes
against our intuition that larger tournament sizes lead to higher
selection pressure and less diversity. The runs using nor-
malization had extremely low diversity, likely because many
runs resulted in populations of essentially empty programs as
discussed in Section V-B.

Figure 5 plots the mean behavioral diversity at each gener-
ation of our runs on the wc problem. All of the runs on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 12

wc problem maintained a relatively high behavioral diversity,
with none falling below 0.65 after the first few generations.
This may partially be attributed to the large length of the
behavior vectors for this problem: the wc problem uses 242
test inputs, each of which produces 3 behaviors (one each
for character, word, and newline outputs) for a total of 726
behaviors. Lexicase selection again maintained the highest
behavioral diversity, not falling below 0.93 after the first 10
generations. Both tournament selection and IFS maintained
moderate diversity with some swings up and down; for both,
runs with higher tournament sizes had higher mean diversity
throughout most of the generations.

The figures presented here show that runs using lexicase
selection maintained higher levels of behavioral diversity than
most runs using tournament selection or IFS. Only for some
generations of the finite algebras problem did IFS with tour-
nament size 3 have higher behavioral diversity; yet these runs
found fewer successful programs than IFS with most other
tournament sizes. We found it remarkable that while IFS was
designed to maintain population diversity, in our experiments
it almost never achieved higher levels of behavioral diversity
than lexicase selection, and even had lower diversity than
standard tournament selection on some problems. Even though
lexicase selection was not designed for diversity maintenance,
it consistently produced high behavioral diversity while also
finding the most successful programs. This correlation sug-
gests that lexicase selection’s ability to maintain high levels
of diversity while also applying strong selection pressure on
random subsets of the test cases may be partially responsible
for its success on the uncompromising problems presented
here.

VI. CONCLUSION

The results presented above clearly demonstrate, using two
different genetic programming systems and four different
problems, that lexicase selection can perform well on at least
some uncompromising problems—that is, on problems where
solutions must perform optimally on each of many test cases,
without compromising performance on any one test case for
improved performance on others. As we have argued above,
this is a broad class of problems that includes many problems
to which genetic programming has traditionally been applied.

In tests of standard tree-based genetic programming on a
finite algebras problem we saw that sets of runs using lexicase
selection succeeded nearly 100% of the time whereas runs
using tournament selection, with tournament sizes ranging
from 2 to 10, succeeded between 0% and 26% of the time,
depending on the specific finite algebra and the tournament
size used. Runs using implicit fitness sharing did better than
runs using ordinary tournaments, but nonetheless significantly
worse than runs using lexicase selection.

In tests of PushGP on the 3-bit digital multiplier problem,
the factorial regression problem, and the wc utility problem
we also observed significant advantages from the use of
lexicase selection. Indeed, the results of these experiments
were even more dramatic, with lexicase selection producing
many solutions (including a solution rate of 100% for the

digital multiplier problem) even though these problems were
almost completely unsolvable using other methods. Runs using
lexicase selection were somewhat slower per generation than
other methods, but this difference in execution times was
minor compared to the benefits to problem solving perfor-
mance. Experimental evidence suggests that lexicase selection
allows genetic programming runs to maintain higher levels of
population diversity, which we hypothesize contributes to the
observed increases in performance.

One drawback of the form of lexicase selection used here is
that it may perform poorly in contexts in which the “elite sets”
for most test cases include only a single individual. In these
contexts lexicase selection will base selection on single test
cases rather than on combinations of cases. We have seen this
problem arise when applying lexicase selection to problems
that give continuous errors, such as floating-point symbolic
regression problems. In preliminary tests on problems of this
nature we have seen lexicase selection perform poorly in
comparison to tournament selection. One option for addressing
this issue is to consider non-elitist forms of lexicase selection,
in which we modify the specification for which candidates
are eliminated at each step of the lexicase selection algorithm.
For example, we could eliminate the worst 1

n of the remaining
candidates at each step until one individual remains, where n
is a small number such as 2 or 3. Another option would be to
retain all candidates with errors within some predefined ε of
the elite value for the case under consideration.

Our own primary motivation for developing lexicase selec-
tion derives from our interest in using genetic programming
for general program synthesis problems, in which we aim to
evolve general software from high-level behavioral tests. We
have applied lexicase selection to a handful of hard problems
of this type, such as the problem of finding a program
to control a simple calculator, where inputs are given as
button presses and outputs are floating-point numbers. Another
problem to which we have applied lexicase selection involves
finding a program that can take ten-pin bowling scores as
string inputs and return the correct total score as an integer.
Both of these problems are both uncompromising and difficult.
While our work on these problems is still ongoing and we
have not yet solved them to our satisfaction, the runs we
have performed with lexicase selection do produce results
that are better than than we have been able to produce using
tournament selection.

In work not presented here, we have attempted to improve
lexicase selection by biasing the order of test cases based on
population statistics, so that cases that one might expect to
require greater attention would be more likely to appear early
in case sequences and hence have a greater influence on parent
selection. While we have experimented with many variations
on this theme we have yet to find a biasing scheme that
outperforms the standard form of lexicase selection described
above. Nonetheless, we suspect that lexicase selection might
be improved by a principled method for biasing the ordering
of the test cases, and we suggest that further research be
conducted on this issue.

Another possible avenue of future research is to improve
the run time of lexicase selection, which may be possible

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 13

through algorithmic improvements. Additionally, in this work
we have used the most run time intensive version of lexicase
selection; it may be possible to consider fewer test cases or a
smaller random subset of the population (i.e. lexicase selection
within a tournament set) without decreasing its performance
significantly, leading to better run time. Even though selecting
a single generation using lexicase selection is slower, in the
genetic programming runs presented here the lexicase selection
runs often used similar amounts of total wall-clock time as
tournament runs. This is because the lexicase selection runs
often used fewer generations total, since they found solutions
earlier in runs. Even in cases where lexicase selection is slower
overall, if it enables genetic programming to find solutions to
problems that tournament selection cannot, its use is obviously
worthwhile.

The work presented here applies lexicase selection only to
genetic programming, but there is no obvious reason that it
would not also be useful in other population-based evolution-
ary computation systems. It is applicable in any context in
which parents are selected based on performance, and in which
performance is assessed relative to more than one “case.” Our
hypothesis is that it will be most useful in uncompromising
problems, but determining its full range of applicability is a
topic for future research.

Of course, we do not expect lexicase selection to provide a
“free lunch” [35] over all problems (even all uncompromising
problems) or all evolutionary computation systems. It would
not surprise us if it were possible to specify a problem and
an evolutionary computation system for which solutions could
only be reached via parents that are mediocre across all test
cases. But considering the dramatic benefits observed for
lexicase selection on the problems and systems examined here,
we are optimistic about the prospects for lexicase selection
when used on other problems and with other systems as well.

ACKNOWLEDGMENT

Thanks to D. Homer, W. La Cava, and the other members
of the Hampshire College Computational Intelligence Lab for
helpful discussions, to J. Erikson for systems support, and
to Hampshire College for support for the Hampshire College
Institute for Computational Intelligence.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[2] R. I. McKay, “Fitness sharing in genetic programming,” in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-
2000). Las Vegas, Nevada, USA: Morgan Kaufmann, 10-12 Jul. 2000,
pp. 435–442.

[3] D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, and S. Luke, “Better
GP benchmarks: community survey results and proposals,” Genetic
Programming and Evolvable Machines, vol. 14, no. 1, pp. 3–29, Mar.
2013.

[4] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, Jan.-Feb. 2012.

[5] W. B. Langdon and M. Harman, “Optimising existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation.

[6] S. Luke and L. Panait, “Is the perfect the enemy of the good?” in
GECCO 2002: Proceedings of the Genetic and Evolutionary Compu-
tation Conference. New York: Morgan Kaufmann Publishers, 9-13 Jul.
2002, pp. 820–828.

[7] L. Spector, “Assessment of problem modality by differential perfor-
mance of lexicase selection in genetic programming: a preliminary
report,” in Proceedings of the fourteenth international conference on Ge-
netic and evolutionary computation conference companion, ser. GECCO
Companion ’12. New York, NY, USA: ACM, 2012, pp. 401–408.

[8] S. Starosta and H. Nomura, “Lexicase parsing: A lexicon-driven ap-
proach to syntactic analysis,” in Proceedings of the 11th Coference on
Computational Linguistics, ser. COLING ’86. Stroudsburg, PA, USA:
Association for Computational Linguistics, 1986, pp. 127–132.

[9] T. Helmuth and L. Spector, “Evolving a digital multiplier with the
pushgp genetic programming system,” in GECCO ’13 Companion:
Proceeding of the fifteenth annual conference companion on Genetic
and evolutionary computation conference companion. Amsterdam, The
Netherlands: ACM, 6-10 Jul. 2013, pp. 1627–1634.

[10] J. Noble and R. A. Watson, “Pareto coevolution: Using performance
against coevolved opponents in a game as dimensions for pareto se-
lection,” in Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2001. Morgan Kaufmann, 2001, pp. 493–500.

[11] W. B. Langdon, “Evolving data structures with genetic programming,” in
Proceedings of the 6th International Conference on Genetic Algorithms.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp.
295–302.

[12] ——, “Advances in genetic programming.” Cambridge, MA, USA: MIT
Press, 1996, ch. Data structures and genetic programming, pp. 395–414.

[13] J. Horn, N. Nafpliotis, and D. E. Goldberg, “Multiobjective optimization
using the niched pareto genetic algorithm,” University of Illinois at
Urbana-Champaign, 104 South Mathews Avenue, Urbana, IL 61801,
Tech. Rep. IlliGAL 93005, 1993.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[15] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” Swiss Federal Institute of Technology
(ETH) Zurich, Tech. Rep. 103, 2001.

[16] G. Smits and M. Kotanchek, “Pareto-front exploitation in symbolic
regression,” in Genetic Programming Theory and Practice II, ser.
Genetic Programming. Springer US, 2005, vol. 8, pp. 283–299.

[17] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proceedings of the Second
International Conference on Genetic Algorithms on Genetic Algorithms
and Their Application. Hillsdale, NJ, USA: L. Erlbaum Associates
Inc., 1987, pp. 41–49.

[18] S. Luke, Essentials of Metaheuristics, 1st ed. lulu.com, 2009.
[19] R. Smith, S. Forrest, and A. S. Perelson, “Population diversity in an

immune system model: Implications for genetic search,” in Foundations
of Genetic Algorithms 2. Morgan Kaufmann, 1992, pp. 153–166.

[20] K. Krawiec and M. Nawrocki, “Implicit fitness sharing for evolutionary
synthesis of license plate detectors,” in Applications of Evolutionary
Computing, EvoApplications 2012, ser. Lecture Notes in Computer
Science, vol. 7835. Vienna, Austria: Springer, 3-5 Apr. 2013, pp. 376–
386.

[21] J. Klein and L. Spector, “Genetic programming with historically assessed
hardness,” in Genetic Programming Theory and Practice VI, ser. Genetic
and Evolutionary Computation. Ann Arbor: Springer, 15-17 May 2008,
ch. 5, pp. 61–75.

[22] K. Krawiec and P. Lichocki, “Using co-solvability to model and exploit
synergetic effects in evolution,” in PPSN 2010 11th International
Conference on Parallel Problem Solving From Nature, ser. Lecture Notes
in Computer Science, vol. 6239. Krakow, Poland: Springer, 11-15 Sep.
2010, pp. 492–501.

[23] L. Spector, “Autoconstructive evolution: Push, pushGP, and Pushpop,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001). San Francisco, California, USA: Morgan Kaufmann,
7-11 Jul. 2001, pp. 137–146.

[24] L. Spector and A. Robinson, “Genetic programming and autoconstruc-
tive evolution with the push programming language,” Genetic Program-
ming and Evolvable Machines, vol. 3, no. 1, pp. 7–40, Mar. 2002.

[25] L. Spector, J. Klein, and M. Keijzer, “The Push3 execution stack
and the evolution of control,” in GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary computation, vol. 2.
Washington DC, USA: ACM Press, 25-29 Jun. 2005, pp. 1689–1696.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 14

[26] L. Spector and T. Helmuth, “Uniform linear transformation with repair
and alternation in genetic programming,” in Genetic Programming
Theory and Practice XI. Springer, 2013, p. In preparation.

[27] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and J. Klein, “Genetic
programming for finite algebras,” in GECCO ’08: Proceedings of
the 10th annual conference on Genetic and evolutionary computation.
Atlanta, GA, USA: ACM, 12-16 Jul. 2008, pp. 1291–1298.

[28] R. McKenzie, G. McNulty, and W. Taylor, Algebras, Lattices and
Varieties. Belmont, CA: Wadsworth and Brooks/Cole, 1987, vol. 1.

[29] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Van-
neschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, and U.-M.
O’Reilly, “Genetic programming needs better benchmarks,” in GECCO
’12: Proceedings of the fourteenth international conference on Genetic
and evolutionary computation conference. Philadelphia, Pennsylvania,
USA: ACM, 7-11 Jul. 2012, pp. 791–798.

[30] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and
reuse of modules in cartesian genetic programming,” IEEE Transactions
on Evolutionary Computation, vol. 12, no. 4, pp. 397–417, Aug. 2008.

[31] A. Agapitos and S. M. Lucas, “Learning recursive functions with object
oriented genetic programming,” in Proceedings of the 9th European
Conference on Genetic Programming, ser. Lecture Notes in Computer
Science, vol. 3905. Budapest, Hungary: Springer, 10 - 12 Apr. 2006,
pp. 166–177.

[32] T. Helmuth and L. Spector, “Word count as a traditional programming
benchmark problem for genetic programming,” in GECCO ’14: Proceed-
ings of the 2014 conference on Genetic and evolutionary computation.
Vancouver, BC, Canada: ACM, 12-16 Jul. 2014, pp. 919–926.

[33] L. Spector, B. Martin, K. Harrington, and T. Helmuth, “Tag-based
modules in genetic programming,” in GECCO ’11: Proceedings of
the 13th annual conference on Genetic and evolutionary computation.
Dublin, Ireland: ACM, 12-16 Jul. 2011, pp. 1419–1426.

[34] D. Jackson, “Promoting phenotypic diversity in genetic programming,”
in PPSN 2010 11th International Conference on Parallel Problem
Solving From Nature, ser. Lecture Notes in Computer Science, vol. 6239.
Krakow, Poland: Springer, 11-15 Sep. 2010, pp. 472–481.

[35] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1, pp. 67–
82, 1997.

Thomas Helmuth received the B.A. degree in
computer science and mathematics from Hamilton
College, Clinton, NY, USA in 2009, and the M.S.
degree in computer science from the University of
Massachusetts, Amherst, MA, USA in 2012.

He is currently working towards the Ph.D. degree
at University of Massachusetts, Amherst, MA, USA.
His research interests focus on automatic program
synthesis for the creation of general software by
genetic programming.

Lee Spector received the B.A. degree in philosophy
from Oberlin College, Oberlin, OH, USA in 1984,
and the Ph.D. degree in computer science from the
University of Maryland, College Park, MD, USA in
1992.

He is currently a Professor of Computer Science
in the School of Cognitive Science at Hampshire
College in Amherst, MA, USA, and an Adjunct
Professor in the Department of Computer Science
at the University of Massachusetts, Amherst, MA,
USA. He conducts research in artificial intelligence,

artificial life, and a variety of areas at the intersections of computer science
with cognitive science, physics, evolutionary biology, and the arts.

Dr. Spector is the Editor-in-Chief of the journal Genetic Programming
and Evolvable Machines, a member of the editorial board of the journal
Evolutionary Computation, and a member of the Executive Committee of the
ACM Special Interest Group on Evolutionary Computation (ACM SIGEVO).

James Matheson received the B.A. degree in ge-
netic programming and behavioral economics from
Hampshire College, Amherst, MA, USA in 2014.

He is a Co-Founder of a communications software
start-up called Trext. His research interests include
neuroscience, economics, and modeling human be-
havior with evolutionary algorithms.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

