
Noname manuscript No.
(will be inserted by the editor)

On the Importance of Specialists for Lexicase Selection

Thomas Helmuth · Edward Pantridge ·
Lee Spector

Received: date / Accepted: date

Abstract Lexicase parent selection filters the population by considering one
random training case at a time, eliminating any individual with an error for the
current case that is worse than the best error of any individual in the selection
pool, until a single individual remains. This process often stops before consid-
ering all training cases, meaning that it will ignore the error values on any cases
that were not yet considered. Lexicase selection can therefore select specialist
individuals that have high errors on some training cases, if they have low errors
on others and those errors come near the start of the random list of cases used
for the parent selection event in question. We hypothesize here that select-
ing such specialists, which may have high total error, plays an important role
in lexicase selection’s observed performance advantages over error-aggregating
parent selection methods such as tournament selection, which select specialists
less frequently. We conduct experiments examining this hypothesis, and find
that lexicase selection’s performance and diversity maintenance degrade when
we deprive it of the ability to select specialists. We also conduct experiments

Thomas Helmuth
Hamilton College
198 College Hill Rd.
Clinton, NY 13323
Tel.: +1-315-859-4507
E-mail: thelmuth@hamilton.edu

Edward Pantridge
Swoop
125 Cambridgepark Drive
Cambridge, MA 02140
Tel.: +1-877-848-9903
E-mail: ed@swoop.com

Lee Spector
Amherst College, Hampshire College, and UMass Amherst
P.O. Box 5000
Amherst, MA 01002-5000
E-mail: lspector@amherst.edu



2 Thomas Helmuth et al.

with a form of tournament selection that has been modified to allow for the
selection of specialists, and find that it performs better than ordinary tourna-
ment selection, but not as well as lexicase selection. These findings, and other
data that we present here, help explain the improved performance of lexicase
selection compared to tournament selection, and suggest that specialists help
drive evolution with lexicase selection toward global solutions.

Keywords lexicase selection · specialists · parent selection · program
synthesis · genetic programming

1 Introduction

Most parent selection methods used in genetic programming, and in evolu-
tionary computation more generally, select individuals on the basis of scalar
fitness values. For problems that involve multiple training cases, these fitness
values are aggregated over all of the training cases, often by summing them.
By contrast, lexicase selection selects parents on the basis of performance on
un-aggregated training-case errors [34,16,23]. It does this by considering train-
ing cases one at a time, in a different random order for each parent selection
event. For each selection it creates a pool that initially contains the entire pop-
ulation, and then, for each training case, it filters the pool to retain only the
individuals with the best1 error for each training case. If the pool is reduced to
a single individual, then that individual is the selected parent. If multiple in-
dividuals survive filtering by all of the training cases, then a randomly chosen
survivor is designated as the selected parent.

Prior work has shown that lexicase selection often works well in practice,
but the reasons that it does so, and the contexts in which it does and doesn’t
work well, are still topics of active investigation. In the present article2 we ad-
dress one hypothesis regarding the efficacy of lexicase selection: that selecting
specialists is important for solving problems. A “specialist” is an individual
that achieves low errors on a subset of training cases while having high errors
on other training cases. The total, or aggregated, error of a specialist individ-
ual is often relatively high compared to the rest of the population, since a high
error on a few training cases can dominate the sum of the errors. In contrast
to specialists, a generalist is an individual that performs approximately the
same on all training cases.

Our motivation for the present study stems from anecdotal evidence ob-
served in an earlier study, which suggested that specialists might contribute
in important ways to the evolution of solutions [26]. This prior work also sug-
gested that the selection of specialists might explain, to a significant degree,

1 We assume lower errors are better, meaning the best error on a training case is the
lowest one.

2 This article is an expanded version of a paper presented at the 2019 Genetic and Evolu-
tionary Computation Conference, which was awarded Best Paper in the Genetic Program-
ming track [14].



On the Importance of Specialists for Lexicase Selection 3

the better problem-solving performance of lexicase selection relative to other
parent selection methods.

More specifically, in this prior work we examined the lineage leading to
a solution to the “Replace Space with Newline” software synthesis problem,
evolved with a PushGP genetic programming system. In the run that we ex-
amined, the generation in which a solution first appeared actually contained
45 distinct solutions. All of these solutions were children of the same parent
in the previous generation, and both this parent and its parent (that is, the
grandparent of all of the solutions) had total error values that were in the
worst quartile of their respective generations by total error. The grandparent
of every solution had nearly the worst total error of its generation. Nonethe-
less, both the grandparent and the parent produced large numbers of offspring,
including large numbers of solutions in the final generation.

A later study using a larger set of benchmark problems observed lexicase se-
lection selecting individuals with high total error significantly more frequently
than tournament selection [32]. This study also observed that lexicase selection
rarely utilizes a majority of the training cases when selecting parents.

These observations motivated the present study, but anecdotal evidence
is not sufficient to ground scientific understanding or to guide engineering
practice. Systematic studies are required to determine the extent to which the
selection of specialists is truly important, and the contexts in which this is
the case. In this paper we document such a study, providing clear evidence
supporting the hypothesis that the selection of specialists is responsible, in
large measure, for the superiority of lexicase selection to tournament selection.

In the following sections we present background on lexicase selection and
then the design, results, and analysis of our new experiments.

2 Background on Lexicase Selection

The basic and most commonly used version of the lexicase selection algorithm
proceeds as follows each time a parent is required:

1. A collection of candidates is set initially to contain the entire population.
2. A collection of cases is set initially to contain all of the training cases,

shuffled in random order.
3. (Optional pre-selection) Partition candidates into groups of individu-

als with the same error vector. Retain only one individual from each group.
4. Until a parent has been designated, loop:

(a) Discard all individuals in candidates except those with exactly the
lowest error for the first case in cases.

(b) If just a single individual remains in candidates, then designate it as
the parent.

(c) If only a single item remains in cases, then designate a randomly chosen
individual from candidates as the parent.

(d) Otherwise, remove the first item from cases.



4 Thomas Helmuth et al.

With regard to the lexicase selection algorithm, it is important to note that
the condition in step 4b often triggers before examining all training cases and,
as we will show later, often considers less than half of the cases. This scenario
provides the mechanism by which lexicase selection can select specialists: A
specialist that performs well on a subset of the cases may have those cases ap-
pear first in some selection event, allowing it to be selected before considering
the cases on which it performs poorly.

The optional pre-selection step (step 3) of the lexicase selection al-
gorithm has no functional effect on the probability of lexicase selecting any
given individual, but in our experience gives significant computational time
savings. Consider a group of individuals with identical error vectors. With-
out the pre-selection step, once this group of individuals are the only ones
left in candidates, the algorithm must continue through the remaining cases,
and then choose one of the individuals in the group randomly. With the pre-
selection step, there is only one individual from the group in candidates, so
at the point when only individuals in the group would have remained, that
will be the only individual left in candidates and will be selected. Because of
this, the pre-selection step can significantly reduce the number of comparisons
of errors on training cases, without changing the probability of lexicase selec-
tion selecting a given individual. Note that this pre-selection step cannot be
used with epsilon lexicase selection or some other relaxations of the algorithm
(see below), as pre-selection changes the probabilities of selection with these
algorithms.

Lexicase selection has been studied in several settings, and several vari-
ants of the basic algorithm have been proposed (for example, relaxations of
the algorithm [36]). Among the most significant of these variations is epsilon
lexicase selection, in which “exactly the lowest error” in the description of the
algorithm is replaced with “within epsilon of the lowest error” for a suitably
defined epsilon; this has proven to be particularly effective on problems with
floating-point errors such as symbolic regression [24,23]. Additionally, lexi-
case selection has been effectively used to solve benchmark problems in areas
such as general program synthesis [15,5], boolean logic and finite algebras [16,
25], learning classifier systems [1], evolutionary robotics [29,30], and boolean
constraint satisfaction using genetic algorithms [28].

Lexicase selection often produces and maintains particularly diverse popu-
lations, which has been hypothesized to be responsible, in part, for its problem-
solving power [10,11]. If lexicase selection does in fact select specialists more
often than other parent selection techniques, this may contribute to its ef-
fects on diversity, regardless of effects on problem-solving performance. We
investigate this question in Section 6.4.

An additional aspect of lexicase selection that bears consideration is the
fact that selected individuals will always be non-dominated in their popula-
tions and elite with respect to at least one training case, a property that has
been characterized as inhabiting the “corners” of the Pareto front [23].



On the Importance of Specialists for Lexicase Selection 5

3 Specialists in Genetic Programming

As we have discussed, specialists achieve low errors on some training cases
and high errors on others, resulting in a relatively high total error. On the
other hand, generalists perform similarly on all training cases. Consider the
following training cases for the function y = (x1)2 − x2.

x1 x2 y
2 1 3
3 5 4
1 3 -2

The following two tables describe the actual output (ŷ) and expected out-
put (y) of a generalist and a specialist on each training case.

Generalist
ŷ y Error
10 3 7
-8 4 12
6.5 -2 8.5

Total: 27.5

Specialist
ŷ y Error

-100 3 103
err 4 1,000,000

-1.99 -2 0.01
Total: 1,000,103.01

The generalist has similar error values across all training cases while the
specialist has a near zero error on one training case but high errors on the other
training cases. On an actual problem with many training cases, a specialist
will likely perform well on a subset of the training cases, not just one of them.
Notice that the specialist in this example has received a penalty error of one
million on the second training case because it could not be evaluated on the
given set of inputs.

The total error of the specialist is drastically higher than the generalist.
However, the generalist was not able to achieve a near zero error on any of
the training cases. In an evolutionary population that is ranked by total error,
the generalists will tend to have lower rank than the specialists. On the other
hand, the specialist may have discovered something truly useful about solving
the problem as indicated by its one (or more with real problems) nearly per-
fect output, and might be worth selecting to pass on its genetics to the next
generation.

4 Experimental design

In Section 1 we described a single run that featured an individual in the
bottom quartile of the population (when sorted by total error) that was the
parent of 45 solution programs. Later, in Section 6 we will show that special-
ists make up large portions of the individuals selected by lexicase selection
compared to tournament selection. Still, this does not answer the question of



6 Thomas Helmuth et al.

whether selecting specialists is an important component to lexicase selection’s
improved performance compared to tournament selection and other selection
methods, or whether it is a side effect that has little bearing on the trajectory
of evolution.

Does lexicase selection perform well because it selects specialists, or can
it maintain good performance without selecting individuals with poor total
error? We hypothesize that lexicase selection’s ability to select specialist in-
dividuals allows it to more effectively explore the search space than if it were
limited to selecting individuals with good performance when measured by to-
tal error. We do not expect tournament selection to exhibit similar decreases
in performance when limited to selecting individuals with good total error,
since it does not often select individuals with poor total error. Additionally,
we expect that limiting lexicase selection to individuals with better total error
will decrease population diversity.

To test our hypotheses, we have designed and conducted an experiment in
which we do not allow parent selection to select individuals with poor total
error relative to the population. We implemented this restriction by adding
a new survival selection step that is run before parent selection called elitist
survival selection. During elitist survival selection, we sort the population by
total error and only allow the best X% of the population to “survive” to be
available to make children. We call the percent of the population that survives
this step the elitist survival rate. We then conduct parent selection using this
reduced population as normal. With 100% elitist survival we would keep the
entire population (i.e. no individuals are removed); 30% elitist survival would
keep only the best 300 individuals sorted by total error (out of a population
of 1000) to be available for parent selection. If our hypothesis holds, we would
expect lower levels of elitist survival rate to produce decreased performance
with lexicase selection but not with tournament selection.

4.1 Benchmark Problems

The problems used in the experiments described here were taken from a bench-
mark suite of software synthesis problems, which were derived from exercises in
introductory computer science textbooks [15]. These problems require general-
purpose programming tools to solve, such as multiple data types (strings,
integers, floats, Booleans, vectors, etc.) and various control flow structures.
These problems have been addressed in several studies, using multiple genetic
programming systems including PushGP [15,26,10,12,11,9], grammar guided
GP [8,5,6,7], grammatical evolution [18,22], and tag-based linear GP [19,4],
as well as by at least one non-evolutionary program synthesis technique [33].

We selected 8 out of the 29 benchmark problems to use in this study to
reflect a wide range of requirements and difficulties. The specific problems
addressed in this study are Last Index of Zero, Mirror Image, Negative to
Zero, Replace Space with Newline, String Lengths Backwards, Syllables, Vec-
tor Average, and X-Word Lines. Some of these problems have been solved with



On the Importance of Specialists for Lexicase Selection 7

genetic programming using lexicase selection over 75% of the time out of 100
runs, while others have success rates around 25%.

In this study, we follow the guidance published with the benchmark suite
about how to determine whether a run is successful or not [15]. Each GP run
uses a different randomly-generated set of training cases, as well as a larger
set of unseen test cases used to assess generalization. Once a program has
evolved that passes all of the training cases, we stop evolution and test it on
the unseen test set—if it passes those as well, it counts as a solution. If the
program that passes the training cases does not pass the test set, it counts
as a failed run, just like runs that reach the maximum allowed generations.
In this paper we additionally automatically simplify the programs that pass
the training data before testing them for generalization, a process that shrinks
program size without changing the behavior of the program on the training
set. Previous work has shown that automatic simplification effectively increases
generalization on these benchmark problems [9].

4.2 Push and PushGP

The experiments conducted in this study were run using a PushGP genetic
programming system, which evolves stack-based programs expressed in the
Push programming language [37,35]. The key feature of Push for the exper-
iments presented here is its multi-stack architecture, which includes a stack
for each data type and instructions that always take their arguments from
the correct stacks and push their results to the correct stacks. This facilitates
the evolution of programs that use multiple, nontrivial data types and control
structures, making it suitable for solving the benchmark problems described
above. In addition, a wealth of prior data on the performance of PushGP on
these problems can provide context for the results obtained in different ex-
perimental conditions [26,10,12,11,9]. We use the Clojure implementation of
PushGP3, which was also used in the aforementioned studies.

The parameters and configurations of the PushGP system that we used for
the experiments here are the same as those described in the original benchmark
description [15]. Table 1 presents the key parameters, and the code used for
our experiments is available on GitHub.4

5 Specialists Under Tournament Selection

Tournament selection tends to select generalists because it uses an aggregate
error metric, such as root mean square error, classification accuracy, or total
error. To compute these kinds of error metrics, an individual’s errors on all
training cases must be considered. If an individual performs particularly poorly
on any subset of training cases, its aggregated error will be high relative to the

3 https://github.com/lspector/Clojush
4 https://git.io/Je8BR

https://github.com/lspector/Clojush
https://git.io/Je8BR


8 Thomas Helmuth et al.

Table 1 PushGP system parameters and the usage rates of genetic operators.

Parameter Value

population size 1000
max number of generations 300
tournament size for tournament selection 7

Genetic Operator Rates Prob

alternation 0.2
uniform mutation 0.2
uniform close mutation 0.1
alternation followed by uniform mutation 0.5

Genetic Operator Parameters Prob

alternation rate 0.01
alternation alignment deviation 10
uniform mutation rate 0.01

population and its probability of getting selected will be low. Methods such
as implicit fitness sharing have been proposed to help alleviate this problem,
though such methods still use a single aggregate fitness value that still pun-
ishes individuals that perform particularly poorly on a subset of training cases.
While implicit fitness sharing gives some improvement over tournament selec-
tion, it has performed significantly worse than lexicase selection on a variety
of problems [16,15].

Table 2 Theoretical probability of tournament selection with tournament size 7 selecting
an individual that would be removed by X% elitist survival. For example, the probability of
selecting an individual removed by 50% elitist survival is 0.00781, meaning that individuals
with total error worse than the median make up less than 0.8% of the parents when using
tournament selection.

% Elitist
Survival

Probability of Selecting
A Removed Individual

10 0.47829
20 0.20971
30 0.08235
40 0.02799
50 0.00781
60 0.00163
70 0.00021
80 0.00001
90 0.0000001

100 0

With tournament selection, the number of times an individual can be se-
lected is limited by the number of tournaments in which it participates. If
the best member of the population participates in 1% of the tournaments for
a given generation, it will be selected 1% of the time that generation, but
no more. Since the expected number of tournaments in which each individual



On the Importance of Specialists for Lexicase Selection 9

0.000

0.002

0.004

0.006

0.008

0 250 500 750 1000
Individual's Rank in Population

P
ro

ba
bi

lit
y 

of
 S

el
ec

tio
n

Fig. 1 Probability mass function of selecting individual with rank i out of a population
of 1000 individuals using tournament selection with tournament size 7, assuming no two
individuals have the same rank. This plots Equation 1.

participates is constant for a particular population size P and tournament size
t, the probability of an individual being selected by tournament selection is
entirely determined by its rank in the population. In particular, Bäck [2,3]
shows that the probability of selecting an individual with rank i ∈ [1, P ], with
i = 1 being the best rank, is

p(i) =
(P − i+ 1)t − (P − i)t

P t
(1)

assuming no two individuals have the same fitness. With ties in the rankings,
this equation does not hold exactly, but is approximately correct unless there
are many tied individuals. We plot this probability mass function in Figure 1.

Table 2 shows that tournament selection rarely selects poor-ranking in-
dividuals. For example, it only selects individuals in the worst 50% of the
population (by total error) 0.78% of the time. In our experiments without
elitist survival (the same ones discussed in Section 6), tournament selection
selected individuals in the worst 50% of the population at a rate of 3.3%. This
is greater than the 0.78% predicted by the theoretical probability of selection
due to the selected benchmark problems producing a high numbers of ties in
total error. Still, with only 3.3% of selections going to such individuals, those
with error worse than the median will have very little influence on evolution.



10 Thomas Helmuth et al.

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

500000

1000000

1500000

2000000

0e+00

2e+06

4e+06

6e+06

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

2e+06

4e+06

6e+06

0e+00

1e+06

2e+06

0

2500000

5000000

7500000

Number of Training Cases Used In Selection

C
ou

nt

Fig. 2 Each histogram shows the distribution of the number of training cases used across all
lexicase selection events for each problem. With the exception of the Mirror Image problem,
lexicase selection almost never considers more than 50 training cases.

Both theoretical and empirical evidence suggest that tournament selection
will almost never select specialists. Thus, the elitist survival filtering should
not have a strong impact on tournament selection’s ability to find solution
programs, which we test empirically in Section 6.4.

6 Specialists Under Lexicase Selection

By considering training cases one at a time, lexicase selection often selects
an individual without considering all of the training cases; this idea explicitly
influenced the design of lexicase selection. When halting before seeing all of the
training cases, the lexicase algorithm will ignore the error values on all other
training cases, regardless of whether they are relatively good or relatively poor
compared to the rest of the population. Lexicase selection therefore has the
ability to select specialist individuals that perform extremely well on some
cases while having very poor error on other cases.

However, just because it is possible for lexicase selection to select specialist
individuals does not mean that it happens often or has an effect on lexicase
selection’s performance. In this section, we will provide evidence showing that
lexicase selection can select specialists, that it selects them relatively often,
and that selecting specialists is important for its performance.

6.1 Lexicase Case Usage

Figure 2 plots histograms of the number of training cases used in each selection
event across each problem. It should be noted that this statistic clearly varies
between problems and that these results assume the optional pre-selection step



On the Importance of Specialists for Lexicase Selection 11

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

1

10

100

1000

1

10

100

1000

After This Many Steps of Lexicase

In
di

vi
du

al
s 

R
em

ai
ni

ng

Percentile

50th

75th

90th

Fig. 3 The number of individuals remaining after each step of lexicase selection (i.e. each
training case considered) across all selections in 100 runs using lexicase selection. Percentiles
are taken from every selection event in all runs at that number of steps. Hence 50th represents
the median number of individuals remaining at that step, etc. Note the log-scale y-axis.

described in Section 2; otherwise, any time multiple individuals have the same
error vector, 100% of the training cases would be used, since none of them
would differentiate the individuals.

Figure 2 shows that, in practice, lexicase selection rarely considers more
than 25 training cases, and often less than 10; in comparison, each of these
problems has 100 or more training cases. These measurements agree with
the empirical results on a different set of benchmarks obtained in a previous
study [32]. These results provide evidence that many of lexicase’s selections
ignore more than 75% of the training cases; it is certainly possible that some of
these selected individuals achieved poor errors on some of the ignored training
cases.

6.2 Individuals Remaining

Each step of the lexicase selection algorithm considers a new training case and
filters the pool of candidates to include only those individuals with the best
error on that case. After each step, fewer individuals remain in contention to be
selected. Figure 3 gives the number of individuals remaining after every step of
lexicase selection, across all parent selections in every run for each problem. We
plot the median, 75th percentile, and 90th percentile of numbers of individuals
remaining. Note that after lexicase selection has reduced the candidate pool



12 Thomas Helmuth et al.

down to 1 individual (say, at step N), that selection is considered to have 1
individual remaining for every step > N for these calculations.

We see that for many of these problems (each of which features 100+
training cases), most selections have reduced the pool of candidates to 10 or
fewer individuals after considering a small number of cases. This indicates that
even if a selection requires many more cases to decide, for the majority of the
algorithm, only a small number of individuals are in consideration. Note that
the Mirror Image problem, which has by far the most individuals remaining
at every step, is a boolean output problem, meaning that every program is
either correct or incorrect, unlike other problems which have varying degrees
of incorrectness.

These results indicate that any individual that is selected by lexicase selec-
tion must not only be good at however many cases it takes for lexicase selection
to prefer it to any other individual, but also that it is one of a few individuals
that are best in the population on the first few cases that lexicase considers.
Thus the individual must specialize in those cases compared to the population,
in the sense that only a few other individuals in the population perform as
well on those cases. This meaning of “specialization” is subtly different from
(but related to) our definition in the rest of the paper of “performing very well
on a subset of cases while performing poorly on another subset.” That said, it
adds to the evidence that lexicase selection selects specialists.

6.3 Ranks of Selected Individuals

Across all problems, lexicase selection selects individuals in the worst 50% of
the population (by total error) at a rate of 7.9%. Although this may seem
low, it is more than twice the rate of tournament selection, as discussed in
Section 5.

Figure 4 shows how the median rank (when sorted by total error) of indi-
viduals selected by lexicase selection changes throughout evolution. Lexicase
selection begins evolution by selecting individuals with higher (i.e. worse) rank
than tournament selection on most problems. As evolution searches the space,
the median rank of individuals selected by lexicase selection dips lower than
the median empirically recorded rank of individuals selected by tournament
selection on some problems. This is due to the low levels of semantic and
behavioral diversity produced by tournament selection leading to many in-
dividuals with equal total error [10]. Individuals with equal total error are
ranked arbitrarily, yet tournament selection will select between them with
equal probability, which inflates the observed median rank. The red horizontal
line in Figure 4 shows the theoretical expected rank of individuals selected by
tournament selection assuming each individual’s total error is unique. Lexicase
selection rarely selects individuals having a lower rank than the expected rank
of tournament selection.

For many of the problems in Figure 4, the median rank of individuals
selected by lexicase slowly decreases throughout evolution. This indicates that



On the Importance of Specialists for Lexicase Selection 13

Fig. 4 The median rank of individuals selected at each generation by lexicase selection
and tournament selection. The colored regions surrounding the median lines show the range
between the first and third quartiles. The red horizontal lines show the expected median
rank of individuals selected by tournament selection assuming all individuals have a unique
total error. The small line plots below each problem show the number of unfinished runs at
each generation with lexicase selection. These plots show that as runs finish due to candidate
solutions being found, the aggregate measurements over the later generations become less
representative.



14 Thomas Helmuth et al.

lexicase selection turns more toward low-rank (better individuals with lower
total error) individuals later in runs. While we are not sure exactly what causes
this phenomenon, we hypothesize that, in many cases, lexicase selection has
concentrated on one part of the search space, attempting to refine one or more
promising programs into solutions (and likely often doing so). Additionally,
many runs of lexicase terminate when finding solution programs before the
maximum number of generations, meaning that the remaining runs that have
not finished are the only ones factoring into the upper plots. Once many runs
have finished, the remaining runs may not be representative of what a larger
sample of runs would show, which is clearly the case for the Mirror Image
problem.

Since lexicase selection only retains individuals with elite errors on the
first test case it considers, every selected individual is elite on a subset of the
training cases. In combination with the observed tendency to select individ-
uals with high total error ranks compared to tournament selection, it can be
concluded that lexicase selection is definitively selecting specialists at a much
higher rate than tournament selection.

6.4 Importance of Selecting Specialists with Lexicase Selection

In Section 4, we presented the hypothesis that lexicase selection’s ability to
select specialist individuals with poor total error improves its performance
compared to the setting in which it is limited to selecting individuals with
good total error. To test this hypothesis, we conduct runs of PushGP using
elitist survival with elitist survival rates of 10% to 100% in increments of 10.
By using elitist survival, we can force selection (lexicase or tournament) to not
select individuals with total error worse than some percent of the population.
Thus, for example, if it is important for lexicase to select specialist individuals
with rank (when sorted by total error) worse than 60% of the population, then
we would expect lexicase selection with 60% elitist survival to perform worse
than with 100% survival of the population.

Based on Equation 1, we can calculate how often we would expect tour-
nament selection to select the individuals excluded by elitist survival.5 The
probabilities of tournament selection choosing an individual removed by eli-
tist survival at different rates are given in Table 2. Tournament selection would
select a decent proportion of the individuals removed by 30% elitist survival,
at around 0.08. We can see that most of those individuals have ranks between
30% and 50%, since tournament selection selects individuals worse than the
median with probability of only about 0.0078. Thus, we would not expect 50%
survival elitism to affect the performance of tournament selection, and cer-
tainly not 70% survival elitism. Even 20% survival elitism may have negligible
effects.

5 Figure 1, which plots the probability distribution defined by Equation 1, is useful to
visualize these cumulative probabilities.



On the Importance of Specialists for Lexicase Selection 15

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Elitist Survival Rate

S
uc

ce
ss

 R
at

e

Problem lexicase tournament

Fig. 5 The impact of elitist survival filtering on the ability of lexicase selection and tourna-
ment selection to find generalizing solution programs. As the elitist survival rate increases,
lexicase selection tends to find more solutions, while tournament selection does not.

Figure 5 gives the number of successful runs on 8 benchmark problems
using elitist survival rates of 10% to 90% in increments of 10 with lexicase and
tournament selection. We also include 100% elitist survival, which is equivalent
to not using elitist survival, since the entire population is kept. We plot a
linear regression line for each problem, and use an F -test at the 0.05 level to
determine if there is a relationship between the elitist survival rate and the
number of solutions for each method.

On all 8 of the problems, there is a significant relationship between the
elitist survival rate and the number of solutions found by lexicase selection,
indicating that lexicase performs significantly worse when limited to smaller
elite proportions of the population. On the other hand, when using tourna-
ment selection, only two of the problems (Mirror Image and Negative to Zero)
showed a significant relationship between elitist survival rate and number of
solutions. As predicted by the small effects of lower-rank individuals on tour-
nament selection (as discussed in Section 5), removing those lower-rank indi-
viduals has little effect on the performance of tournament selection. In fact,
limiting tournament selection to only the top 10% of the population by total
error gave numbers of successes insignificantly different from using the entire
population on every problem except for Negative to Zero (using a chi-squared
test).

The behavioral diversity of a population is the proportion of distinct be-
havior vectors that are present in a population, where a behavior vector is
simply the outputs of a program when run on the training cases [20]. The
behavior vector is sometimes called the semantics of the program [25], as in



16 Thomas Helmuth et al.

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0 100 200 300 0 100 200 3000 100 200 300 0 100 200 300

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Generation

D
iv

er
si

ty

Elitist Survival Rate
10
20

30
40

50
60

70
80

90
100

Fig. 6 Mean behavioral diversity for lexicase selection using elitist survival at different
rates.

geometric-semantic genetic programming [31]. We plot the population behav-
ioral diversity of lexicase selection in Figure 6. We do not present the diversi-
ties of populations under tournament selection, which were very low for every
problem and every elitist survival rate, mirroring to previous studies compar-
ing the behavioral diversity of lexicase and tournament selection [10,11]. This
result is consistent with the unchanged performance of tournament selection
with elitist survival, both of which can be explained by the small portion of
selections affected by elitist survival.

For most problems in Figure 6, the behavioral diversity of runs using lexi-
case selection decreases as the number of individuals removed by elitist survival
increases. We see this decrease across all problems besides Vector Average,
though the impact varies per problem. On the Replace Space With Newline
problem, lexicase selection with elitist survival rates below 80% grow in diver-
sity early, but then lose diversity and finish the remainder of the run with low
levels of diversity. On many of the other problems, the lower rates of elitist
survival have similar curves to the higher rates, just at lower levels.

One interesting finding here is that for the Vector Average problem, remov-
ing the worst individuals increases behavioral diversity, down to 30% elitist
survival. This strange pattern says that if lexicase selection is given fewer in-
dividuals to select, the resulting populations will be more diverse. Despite the
higher levels of diversity, Vector Average followed a similar pattern of poorer
performance with low levels of elitist survival, as shown in Figure 5.

These results provide evidence supporting our hypothesis that lexicase se-
lection makes use of specialist individuals with poor total error relative to
the rest of the population—individuals that presumably have poor errors on
some training cases but good errors on others. Lexicase selection shows clear
correlation between elitist survival and success rate on every problem, per-
forming better when able to select from the worst individuals when sorted by



On the Importance of Specialists for Lexicase Selection 17

total error. As discussed earlier, individuals selected by lexicase must be elite
on a subset of the training cases; those that also have poor total error are
therefore specialists. Lexicase selection performs better when allowed to select
these specialists, which clearly help drive the direction of evolution toward
more solutions.

Our plots show that behavioral diversity in lexicase selection runs de-
creases, sometimes significantly, as we decrease the number of individuals that
survive elitist survival. These plots support our hypothesis that the high di-
versity seen in runs using lexicase selection is influenced by lexicase selection’s
ability to select individuals with relatively poor total error. Selecting special-
ists thus allows lexicase selection to better explore the search space, likely
contributing to its better performance. The decreased diversity in runs using
lower rates of elitist survival likely contributes to the corresponding decreases
in performance observed in Figure 5.

As expected, tournament selection was not significantly affected by elitist
survival selection at any level, even when removing 90% of the population, on
6 out of 8 problems. As we saw in Table 2, tournament selection simply does
not often select specialist parents from the bottom ranks of the population. In-
stead, it concentrates on the individuals with the best total error, and mostly
selects from the top 20% of the population, with more than half of selections
coming from individuals in the top 10% of the population. Tournament se-
lection’s tendency to select individuals in the top ranks of the population,
ignoring specialist individuals with worse total error, explains at least part of
the difference in performance between it and lexicase selection seen in previous
studies [15,16].

6.5 Lexicase Selection and UMAD

Our original experiments, described above and in [14], use the combination
of genetic operators given in Table 1. Alternation is a crossover operator that
copies stretches of each parent at a time; uniform mutation replaces individual
instructions with some probability; and uniform close mutation changes the
position of parentheses in the Push programs [17]. Since running those exper-
iments, we have started using the new genetic operator “uniform mutation
with addition and deletion” (UMAD) [13]. UMAD performs quite well when
using PushGP on the program synthesis problems explored here, and in fact
has produced the best results of any genetic operators to date, despite only
consisting of single-parent mutation. As such, we decided to replicate the elitist
survival rate experiment, this time with UMAD as the only genetic operator
and lexicase for parent selection.

We use size-neutral UMAD as the only genetic operator, with an addition
rate of 0.09, as recommended in [13]. This means that each gene has a prob-
ability of 0.09 of having a new random gene inserted before or after it, and
then every gene has a corresponding probability of being deleted, such that
the child genome is the same size as the parent on average.



18 Thomas Helmuth et al.

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Elitist Survival Rate

S
uc

ce
ss

 R
at

e

Problem lexicase lexicase−umad tournament

Fig. 7 The impact of elitist survival filtering on the ability of lexicase selection with UMAD
as the only genetic operator (lexicase-umad) to find generalizing solution programs. We
include lexicase and tournament selection with the original genetic operators (as in Figure 5)
for comparison.

In Figure 7, “lexicase-umad” gives results using UMAD along with lexi-
case selection. As expected, PushGP with UMAD found many more solution
programs, no matter what the elitist survival rate. We see that for three prob-
lems (Last Index of Zero, Mirror Image, and Syllables), decreasing the elitist
survival rate has little to no effect on the success rate, leading to regression
lines that are essentially flat. For all five other problems there is a significant
relationship between elitist survival rate and success rate, indicating the im-
portance of selecting specialists for those problems when using UMAD. Thus
for some, but not all, problems, the importance of lexicase selecting specialists
also is evident when using UMAD as the genetic operator, but this relationship
isn’t as strong as when using our previous set of genetic operators.

7 Specialists Under Subsampled Training Case Selection

To give further evidence for the importance of selecting specialist individuals,
we devised a new parent selection scheme that makes modifications to standard
tournament selection in a way that makes it more likely to select specialists.
Our goal is to investigate the importance of selecting specialists beyond the
details of the lexicase algorithm. To be clear, this new selection method is
not devised because we think it will compare favorably with methods like
lexicase selection, but instead because it will show how a selection method



On the Importance of Specialists for Lexicase Selection 19

similar to tournament selection but with more emphasis on specialists can
create improvements compared to tournament selection.

The new parent selection method, which we call subsampled training case
selection, has two major differences from tournament selection. First, for each
selection event, we use a subsample of the training cases and select the in-
dividual with the best summed total error on the subsample. To allow for a
range of sizes of subsamples, we choose subsample size by sampling a normal
distribution, rounding to the nearest integer and forcing a minimum of 1 and
a maximum of the number of cases. After deciding on the subsample size, we
sample that number of cases at random.

Second, we make the “tournament set” contain every individual in the
population, instead of only consisting of a small subset of the population.
Thus, we select the best individual in the population on the subsample of
training cases, with ties broken at random.

We created subsampled training case selection because it allows specialist
individuals, which perform well on some training cases and poorly on others,
the chance to be selected when the cases that they specialize in are in the ran-
dom subsample of cases. While it has this in common with lexicase selection, it
does not randomize the relative importance of cases as lexicase selection does,
and thus in some sense shares similarities with both lexicase and tournament
selection. The use of the entire population instead of a tournament set ensures
that a specialist will be considered when its best cases are used in a selection
event.

We conducted a set of GP runs with subsampled training case selection. In
these runs, we tested two different settings of µ (mean percent of cases used)
and σ (standard deviation) for sampling the rounded normal distribution for
subsample sizes. The values for these settings were inspired by the numbers
of cases typically used in lexicase selection (see Section 6.1). One setting used
µ = 0.1 and σ = 0.05, and the other used µ = 0.2 and σ = 0.1. As the success
rate of GP when using µ = 0.1 and σ = 0.05 was better on 10 of the 11
problems we tested, those will be the settings used in our results here.

Table 3 gives the number of successful runs out of 100 comparing tourna-
ment, subsampled training case, and lexicase selection. These runs used UMAD
as the only genetic operator, as in Section 6.5. Subsampled training case se-
lection achieved significantly better results than tournament selection on 8 of
the 11 problems, while lexicase selection was significantly better than tour-
nament on 10 of the problems. Additionally, lexicase selection outperformed
subsampled training case selection on 4 out of 11 problems.

The differences in success rates show how subsampled training case se-
lection’s ability to select individuals that specialize in a subset of the train-
ing cases dramatically improves performance compared to tournament selec-
tion without incorporating lexicase selection’s randomly-ordered importance
of cases. That said, lexicase’s random shuffling of cases does seem to play some
role in its success, as it proved significantly better than subsampled training
case selection on four problems.



20 Thomas Helmuth et al.

Table 3 Number of successful runs out of 100 for tournament, subsampled training case
(STC), and lexicase selection. Bold results are significantly better than tournament, and
underline means significantly better than STC. No set of STC runs were significantly better
than lexicase. Significance was determined using a pairwise chi-squared test with α = 0.05
and Holm correction.

Problem Tournament STC Lexicase

Compare String Lengths 3 45 32
Double Letters 0 10 19
Last Index of Zero 30 63 62
Mirror Image 100 100 100
Negative to Zero 30 50 80
Replace Space with Newline 41 88 87
Scrabble Score 0 5 13
String Lengths Backwards 27 62 94
Syllables 2 46 38
Vector Average 32 72 88
X-Word Lines 0 1 61

More generally, these results provide evidence that tournament selection’s
method of only considering a small portion of the population in the tournament
set is detrimental to solving problems. Both lexicase selection and subsampled
training case selection consider the entire population for each selection event,
meaning that they select whichever individual in the population best fulfills
their requirements (case ordering for lexicase and total error on the subsample
for subsampled training case). These methods allow specialist individuals to
be selected when the cases at which they excel arise, instead of randomly being
left out of contention as in tournament selection.

In fact, we conducted a set of subsampled training case selection runs using
a tournament size of 7 instead of the entire population. We found the results
indistinguishable from tournament selection—not significantly different from
tournament selection on any problem and significantly worse than subsampled
training case selection without a tournament set on the same 8 problems. Thus
allowing subsampled training case selection to select from the entire population
is critical to its improvement over tournament selection.

8 Discussion: What Makes Lexicase Selection Work?

We have made the argument that specialists are important for lexicase selec-
tion’s success, and for successful parent selection more generally. Others have
noted this as well: the importance of specialists in lexicase selection was one
of the stated motivations for the development of batch tournament selection,
which has also shown good performance by selecting specialists [27]. How-
ever, lexicase selection has other traits that may also contribute to its good
performance. Here we will consider other work that has aimed to better un-
derstand lexicase selection in order to develop a more comprehensive picture
about how it works. We will also suggest future work that could contribute to
understanding it better.



On the Importance of Specialists for Lexicase Selection 21

One of lexicase selection’s key algorithmic ideas is that it considers cases in
a new random order for each selection event. The importance of each case for
any particular selection event is determined by this randomly-ordered sequence
of cases, which is processed lexicographically (hence lexi-case). The cases en-
countered by individuals in a single lexicase selection event can be thought of
as random challenges faced by each individual, until an individual proves it-
self better than the others on those random challenges [36]. While subsampled
training case selection can select specialists and outperformed tournament se-
lection (see Section 7), it does not place any emphasis on performing best on
any given training case in its subsample. Thus, as discussed further in [36], it
seems that the random lexicographic ordering of cases contributes to lexicase
selection’s success.

Previous studies have shown lexicase selection to be capable of produc-
ing and maintaining diverse populations compared to tournament selection
and other selection methods [10,11,30]. Such diversity tends to correlate with
problem-solving performance, as having high population diversity can indicate
good exploration of the search space. However, increased diversity has not been
shown to cause improved performance. Indeed, some parent selection meth-
ods (in particular novelty search) have demonstrated higher levels of diversity
than lexicase selection while achieving significantly worse problem-solving per-
formance [21]. Additionally, some lexicase selection variants produced higher
diversity along with worse performance compared to standard lexicase selec-
tion in an evolutionary robotics setting [30]. Thus it seems that while lexicase
selection causes increases in both problem-solving performance and diversity,
the diversity itself is not directly responsible for the improved performance, but
instead is indicative of the exploration that lexicase produces while effectively
searching for a solution program.

Populations evolving by lexicase selection have often exhibited hyperselec-
tion, in which single individuals in one generation are selected as parents for
many, and sometimes nearly all, of the children in the next generation. Ear-
lier work showed that while lexicase selection hyperselects individuals at high
rates, this hyperselection does not significantly impact the performance of GP
using lexicase selection [12]. Thus hyperselection seems to be a benign side
effect of lexicase selection, neither benefiting or hindering its performance.

That said, this earlier work only considered the hyperselection of single
individuals, but not the hyperselection of groups of individuals with identical
error vectors. We know that individuals with identical error vectors frequently
receive selections, and it is possible that such semantically-equivalent indi-
viduals undergo semantic hyperselection. With semantic hyperselection, it is
possible that one error vector has an outsized influence on the next genera-
tion without giving many selections to a single individual. Studying semantic
hyperselection could tell us more about this phenomenon and its effects on
lexicase selection.



22 Thomas Helmuth et al.

9 Conclusions

Numerous demonstrations of lexicase selection’s search performance have con-
cluded it is superior to tournament selection on a variety of tasks. Previous
attempts to explain this behavior have observed increases in population diver-
sity, guarantees of non-dominated selections, and the possibility of selecting
individuals with high total error. This paper formalizes the hypothesis that
lexicase selection’s performance is in part due to its tendency to select spe-
cialists over generalists, especially compared to tournament selection. These
specialists, with excellent errors on some training cases yet poor total error,
receive little attention from most other parent selection methods, which ag-
gregate performance into a single fitness metric.

This paper presents theory explaining the exceedingly low probability of
tournament selection selecting specialists, along with empirical results that
support this theory. In contrast, we observe the comparatively high rate at
which lexicase selection selects specialists. We additionally provide evidence
of test case usage during lexicase selection, indicating that few test cases are
typically used in any one parent selection event, showing how lexicase can
select specialists by ignoring training cases on which the specialist performed
poorly.

To support the hypothesis that the selection of specialists is a key com-
ponent of lexicase selection’s search performance, an elitist survival filter was
applied with various degrees of strictness before conducting parent selection.
This filtering removed all potential specialists and forced lexicase selection
to select among more generalist individuals, which have better total error.
The filter significantly reduced the number of solutions evolution was able to
find, implying that the presence of specialists was crucial to lexicase selec-
tion’s performance. Furthermore, tournament selection was not significantly
impacted by elitist survival filtering. Additionally, we discussed the effects of
specialists on a population’s diversity under lexicase selection, finding that
specialists typically contribute to lexicase selection’s ability to maintain high
rates of population diversity. We also designed subsampled training case se-
lection, which selects the individual from the population that performs best
on a random subset of the training cases, allowing it to select specialists. It
too outperformed tournament selection (though not lexicase selection), giving
more evidence for the importance of specialists.

These findings suggest that future work to improve parent selection tech-
niques should consider their ability to select specialist individuals, which pro-
vided significant benefits to lexicase selection in this study. Additionally, we
solely focused on the automatic program synthesis domain here; programs in
this domain can use control flow structures to act in different modalities for
different inputs [34], potentially leading to the development and importance of
specialists. It could prove informative to replicate this study using genetic pro-
gramming in other domains, especially ones with relatively small instruction
sets such as symbolic regression.



On the Importance of Specialists for Lexicase Selection 23

How does selecting specialists lead to solving problems? How are the skills
of specialists adapted or combined into better individuals? These questions go
beyond the selection of parents and depend on how the GP system generates
children from specialist parents. A solution program must by definition be a
generalist, since it perfectly passes all of the test cases. Future work should
consider how generalists are constructed from specialists, and if there are bet-
ter ways of doing so.

The specialists selected by lexicase selection here were subjected to the
same genetic operators used in other studies with PushGP. However, we could
imagine designing genetic operators with specialists in mind to better make use
of their novel abilities. For example, when combining two specialists, should we
use a different recombination operator than when combining two generalists,
to have a better chance at reaping the benefits of both parents? We could
imagine such operators increasing the efficiency of evolution as it combines
the specializations of individuals until it finds a general solution.

Acknowledgements We thank Nicholas McPhee and members of the Hampshire Col-
lege Institute for Computational Intelligence for discussions that advanced this work. This
material is based upon work supported by the National Science Foundation under Grant
No. 1617087. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: GECCO
’19: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 356–
364. ACM, Prague, Czech Republic (2019). DOI doi:10.1145/3321707.3321828

2. Bäck, T.: Selective pressure in evolutionary algorithms: a characterization of selection
mechanisms. In: Evolutionary Computation, 1994. IEEE World Congress on Compu-
tational Intelligence., Proceedings of the First IEEE Conference on, pp. 57–62 vol.1
(1994). DOI 10.1109/ICEC.1994.350042

3. Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: Proceedings
of the 6th International Conference on Genetic Algorithms, pp. 9–16. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1995). URL http://dl.acm.org/citation.

cfm?id=645514.658088

4. Ferguson, A.J., Hernandez, J.G., Junghans, D., Lalejini, A., Dolson, E., Ofria, C.: Char-
acterizing the effects of random subsampling and dilution on lexicase selection. In:
W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo, B. Worzel (eds.) Genetic Pro-
gramming Theory and Practice XVII. East Lansing, MI, USA (2019)

5. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: M. Castelli,
J. McDermott, L. Sekanina (eds.) EuroGP 2017: Proceedings of the 20th European
Conference on Genetic Programming, LNCS, vol. 10196, pp. 262–277. Springer Verlag,
Amsterdam (2017). DOI 10.1007/978-3-319-55696-3 17

6. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending program synthe-
sis grammars for grammar-guided genetic programming. In: A. Auger, C.M. Fon-
seca, N. Lourenco, P. Machado, L. Paquete, D. Whitley (eds.) 15th International
Conference on Parallel Problem Solving from Nature, LNCS, vol. 11101, pp. 197–
208. Springer, Coimbra, Portugal (2018). DOI 10.1007/978-3-319-99253-2 16. URL
https://www.springer.com/gp/book/9783319992587

http://dl.acm.org/citation.cfm?id=645514.658088
http://dl.acm.org/citation.cfm?id=645514.658088
https://www.springer.com/gp/book/9783319992587


24 Thomas Helmuth et al.

7. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Towards effective semantic op-
erators for program synthesis in genetic programming. In: GECCO ’18: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 1119–1126. ACM, Kyoto,
Japan (2018). DOI 10.1145/3205455.3205592

8. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Towards understanding and
refining the general program synthesis benchmark suite with genetic programming. In:
M. Vellasco (ed.) 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, Rio
de Janeiro, Brazil (2018)

9. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’17, pp. 937–944. ACM, Berlin,
Germany (2017). DOI 10.1145/3071178.3071330. URL http://doi.acm.org/10.1145/

3071178.3071330

10. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis:
A diversity analysis. In: R. Riolo, W.P. Worzel, M. Kotanchek, A. Kordon (eds.)
Genetic Programming Theory and Practice XIII, Genetic and Evolutionary Compu-
tation. Springer, Ann Arbor, USA (2015). DOI 10.1007/978-3-319-34223-8. URL
http://www.springer.com/us/book/9783319342214

11. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selec-
tion on diversity recovery and maintenance. In: GECCO ’16 Companion: Proceed-
ings of the Companion Publication of the 2016 Annual Conference on Genetic and
Evolutionary Computation, pp. 983–990. ACM, Denver, Colorado, USA (2016). DOI
10.1145/2908961.2931657

12. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lexicase se-
lection. In: T. Friedrich (ed.) GECCO ’16: Proceedings of the 2016 Annual Conference
on Genetic and Evolutionary Computation, pp. 717–724. ACM, Denver, USA (2016).
DOI 10.1145/2908812.2908851

13. Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform mutation by
addition and deletion. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’18, pp. 1127–1134. ACM, Kyoto, Japan (2018). DOI doi:10.1145/
3205455.3205603. URL http://doi.acm.org/10.1145/3205455.3205603

14. Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: GECCO
’19: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1030–
1038. ACM, Prague, Czech Republic (2019). DOI doi:10.1145/3321707.3321875. URL
https://dl.acm.org/citation.cfm?doid=3321707.3321875

15. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: GECCO ’15:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1039–1046. ACM, Madrid, Spain (2015). DOI 10.1145/2739480.2754769. URL
http://doi.acm.org/10.1145/2739480.2754769

16. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase
selection. IEEE Transactions on Evolutionary Computation 19(5), 630–643 (2015).
DOI 10.1109/TEVC.2014.2362729. URL http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=6920034

17. Helmuth, T., Spector, L., McPhee, N.F., Shanabrook, S.: Linear genomes for structured
programs. In: Genetic Programming Theory and Practice XIV, Genetic and Evolution-
ary Computation. Springer, Ann Arbor, USA (2016)

18. Hemberg, E., Kelly, J., O’Reilly, U.M.: On domain knowledge and novelty to improve
program synthesis performance with grammatical evolution. In: GECCO ’19: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 1039–1046. ACM,
Prague, Czech Republic (2019). DOI doi:10.1145/3321707.3321865

19. Hernandez, J.G., Lalejini, A., Dolson, E., Ofria, C.: Random subsampling improves
performance in lexicase selection. In: GECCO ’19: Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, pp. 2028–2031. ACM, Prague, Czech
Republic (2019). DOI doi:10.1145/3319619.3326900

20. Jackson, D.: Promoting phenotypic diversity in genetic programming. In: R. Schaefer,
C. Cotta, J. Kolodziej, G. Rudolph (eds.) PPSN 2010 11th International Conference on
Parallel Problem Solving From Nature, Lecture Notes in Computer Science, vol. 6239,
pp. 472–481. Springer, Krakow, Poland (2010)

http://doi.acm.org/10.1145/3071178.3071330
http://doi.acm.org/10.1145/3071178.3071330
http://www.springer.com/us/book/9783319342214
http://doi.acm.org/10.1145/3205455.3205603
https://dl.acm.org/citation.cfm?doid=3321707.3321875
http://doi.acm.org/10.1145/2739480.2754769
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034


On the Importance of Specialists for Lexicase Selection 25

21. Jundt, L., Helmuth, T.: Comparing and combining lexicase selection and novelty search.
In: GECCO ’19: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 1047–1055. ACM, Prague, Czech Republic (2019). DOI doi:10.1145/3321707.
3321787. URL https://dl.acm.org/citation.cfm?doid=3321707.3321787

22. Kelly, J., Hemberg, E., O’Reilly, U.M.: Improving genetic programming with novel
exploration - exploitation control. In: L. Sekanina, T. Hu, N. Lourenço, H. Richter,
P. Garćıa-Sánchez (eds.) EuroGP 2019: Proceedings of the 22nd European Conference
on Genetic Programming, pp. 64–80. Springer International Publishing (2019)

23. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective
analysis of lexicase selection and epsilon-lexicase selection. Evolutionary Computation
(2018). Forthcoming

24. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In:
T. Friedrich (ed.) GECCO ’16: Proceedings of the 2016 Annual Conference on Ge-
netic and Evolutionary Computation, pp. 741–748. ACM, Denver, USA (2016). DOI
10.1145/2908812.2908898

25. Liskowski, P., Krawiec, K., Helmuth, T., Spector, L.: Comparison of semantic-aware
selection methods in genetic programming. In: GECCO 2015 Semantic Methods in Ge-
netic Programming (SMGP’15) Workshop, pp. 1301–1307. ACM, Madrid, Spain (2015).
DOI 10.1145/2739482.2768505. URL http://doi.acm.org/10.1145/2739482.2768505

26. McPhee, N.F., Donatucci, D., Helmuth, T.: Using graph databases to explore genetic
programming run dynamics. In: Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation. Springer, Ann Arbor, USA (2015). URL
http://www.springer.com/us/book/9783319342214

27. de Melo, V.V., Vargas, D.V., Banzhaf, W.: Batch tournament selection for genetic
programming: The quality of lexicase, the speed of tournament. In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’19, pp. 994–
1002. ACM, New York, NY, USA (2019). DOI 10.1145/3321707.3321793. URL
http://doi.acm.org/10.1145/3321707.3321793

28. Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic programming.
In: Genetic Programming Theory and Practice XVI, pp. 123–136. Springer International
Publishing, Cham (2019). DOI 10.1007/978-3-030-04735-1 7. URL https://doi.org/

10.1007/978-3-030-04735-1_7

29. Moore, J.M., Stanton, A.: Lexicase selection outperforms previous strategies for incre-
mental evolution of virtual creature controllers. Proceedings of the European Con-
ference on Artificial Life pp. 290–297 (2017). DOI 10.1162/ecal\ a\ 0050\ 14. URL
https://www.mitpressjournals.org/doi/abs/10.1162/ecal_a_0050_14

30. Moore, J.M., Stanton, A.: Tiebreaks and diversity: Isolating effects in lexicase selection.
The 2018 Conference on Artificial Life pp. 590–597 (2018). DOI 10.1162/isal\ a\ 00109.
URL https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00109

31. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming.
In: C.A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (eds.)
Parallel Problem Solving from Nature, PPSN XII (part 1), Lecture Notes in Com-
puter Science, vol. 7491, pp. 21–31. Springer, Taormina, Italy (2012). DOI doi:
10.1007/978-3-642-32937-1 3

32. Pantridge, E., Helmuth, T., McPhee, N.F., Spector, L.: Specialization and elitism in
lexicase and tournament selection. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’18, pp. 1914–1917. ACM, New York,
NY, USA (2018). DOI 10.1145/3205651.3208220. URL http://doi.acm.org/10.1145/

3205651.3208220

33. Rosin, C.D.: Stepping stones to inductive synthesis of low-level looping programs. In:
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI ’19,
vol. 33. AAAI Press, Palo Alto, California USA (2019)

34. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: A preliminary report. In: K. McClymont, E. Keedwell
(eds.) 1st workshop on Understanding Problems (GECCO-UP), pp. 401–408. ACM,
Philadelphia, Pennsylvania, USA (2012). DOI 10.1145/2330784.2330846. URL http:

//hampshire.edu/lspector/pubs/wk09p4-spector.pdf

https://dl.acm.org/citation.cfm?doid=3321707.3321787
http://doi.acm.org/10.1145/2739482.2768505
http://www.springer.com/us/book/9783319342214
http://doi.acm.org/10.1145/3321707.3321793
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://www.mitpressjournals.org/doi/abs/10.1162/ecal_a_0050_14
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00109
http://doi.acm.org/10.1145/3205651.3208220
http://doi.acm.org/10.1145/3205651.3208220
http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf
http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf


26 Thomas Helmuth et al.

35. Spector, L., Klein, J., Keijzer, M.: The push3 execution stack and the evolution of con-
trol. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, vol. 2, pp. 1689–1696. ACM Press, Washington DC, USA (2005). DOI
10.1145/1068009.1068292. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/

docs/p1689.pdf

36. Spector, L., La Cava, W., Shanabrook, S., Helmuth, T., Pantridge, E.: Relaxations of
lexicase parent selection. In: W. Banzhaf, R.S. Olson, W. Tozier, R. Riolo (eds.) Genetic
Programming Theory and Practice XV, pp. 105–120. Springer International Publishing,
Cham (2018)

37. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with
the push programming language. Genetic Programming and Evolvable Machines 3(1),
7–40 (2002). DOI 10.1023/A:1014538503543. URL http://hampshire.edu/lspector/

pubs/push-gpem-final.pdf

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1689.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1689.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf

	Introduction
	Background on Lexicase Selection
	Specialists in Genetic Programming
	Experimental design
	Specialists Under Tournament Selection
	Specialists Under Lexicase Selection
	Specialists Under Subsampled Training Case Selection
	Discussion: What Makes Lexicase Selection Work?
	Conclusions

