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ABSTRACT
The performance of a genetic programming system depends par-
tially on the composition of the collection of elements out of which
programs can be constructed, and by the relative probability of
different instructions and constants being chosen for inclusion in
randomly generated programs or for introduction by mutation. In
this paper we develop a method for the transfer learning of in-
struction sets across different software synthesis problems. These
instruction sets outperform unlearned instruction sets on a range
of problems.
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1 INTRODUCTION AND PRIORWORK
Genetic programming (GP) synthesizes problem-solving programs
through a process of random generation, random variation, and
(partially-random) selection. Both for the random program gen-
eration and random variation steps, new program elements are
chosen from a collection of elements that is sometimes referred to,
informally, as the “primordial ooze.” In PushGP [5], which we use in
this paper, and other GP program representations, the instructions,
literals, and input variables are put together into one instruction set,
from which random elements are chosen to include in programs.
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The conventional wisdom in the field, only occasionally ad-
dressed explicitly (such as in Koza’s early work [3]), has been that
the GP process is relatively robust to changes to the instruction
set, and that it will perform reasonably well as long as the instruc-
tions needed for solutions are included. Neither the presence of
unneeded instructions nor the relative likelihood of choosing differ-
ent instructions has been thought tomake a substantial difference in
problem-solving performance, presumably because selection would
amplify the prevalence of needed instructions and diminish the
prevalence of others.

However, recent work in grammatical evolution has promoted
the idea that the composition and relative probability of using
specific instructions can have an impact on the performance of
evolution [2]. Hemberg at al. modify the probabilities of selecting
each production through use of domain knowledge gained from the
problem description, and argue more generally for using domain
knowledge to influence the instruction set and the GP algorithm as
a whole [2].

Our experiments are conducted for software synthesis bench-
mark problems, for which prior work has used instruction sets that
were derived from problem statements [1]. More specifically, in the
prior work, all and only the available instructions that manipulate
data types mentioned in the descriptions of the problems were used,
and each had an equal probability of being chosen whenever an
instruction was needed. We call this a type-tuned instruction set.

Some initial experiments indicated that instruction sets domatter,
in that hand-choosing useful instructions improved performance.
This demonstration led us to further investigate the possibility that
performance on unsolved problems could be improved through
transfer learning of instruction sets, automatically and without
human insight.

The expression transfer learning is used to describe machine
learning approaches in which products of a learning process on
one problem are re-used to facilitate learning on a new problem.
Transfer learning has been applied in several contexts and in several
ways in GP, for example by seeding a population with solutions
from related problems; [4] provides a thorough literature review
and classification of approaches.

Within this context, the work presented below involves only
the transfer of knowledge about instruction sets. Our work here
is novel, so far as we know, in applying transfer learning to the
construction of instruction sets for GP. In our experiments, the
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Figure 1: The number of successes out of 100 runs of GP us-
ing type-tuned and transfer-learned instruction sets.

transfer-learned instruction sets perform significantly better than
the type-tuned instruction sets used in previous studies and are
produced in a fully automated way that can be applied to previously
unsolved problems.

2 EXPERIMENT
Using a set of 25 program synthesis benchmark problems, we learn
instruction sets by using solution programs from the 24 problems
not being tested to make up the instruction set when testing the
25th problem. This process ensures that each problem contributes
an equal number of instructions to the instruction set.

We present the number of successes out of 100 PushGP runs for
type-tuned and transfer-learned instruction sets in Figure 1. PushGP
with transfer-learned instruction sets performed significantly better
than with type-tuned instruction sets on 8 out of the 25 problems
we tested: Vector Average, Replace Space with Newline, Negative
To Zero, Syllables, Sum of Squares, Scrabble Score, Vectors Summed,
and Checksum. While transfer-learned performed worse on a few
problems, it was never significantly worse than type-tuned.

In other experiments, not fully documented here, we show that
largely untuned instruction sets, which include “every instruction
but the kitchen sink” perform worse than those tuned only on
the basis of data types included in the problem description, as has
previously been standard when running PushGP on these bench-
mark problems. Additionally, we find that methods that produce
unrealistically well-tuned instruction sets, based on either human
intuition or previous solution programs, perform significantly bet-
ter than type-tuned instruction sets on almost every one of our 25
benchmark problems. These results demonstrate the importance of
the composition of the instruction set, encouraging us to seek rea-
sonable methods for automatically tuning the instruction set. The
transfer learning approach described here appears to provide such

a method, improving problem-solving performance on problems
from the same domain as other problems that have already been
solved.

3 CONCLUSIONS
In this paper we explore the use of transfer learning of instruction
sets on problem-solving performance of PushGP when applied to
program synthesis problems. This method adopts instructions from
solution programs found in previous runs on other problems to
tune the instruction sets on new problems. Our experiments show
the benefits of transfer learning of instruction sets, performing
significantly better on 8 of the 25 benchmark problems.

It is important to note that while this paper operates mainly
in the PushGP system, the ideas and principles derived from the
results should transfer to other GP systems. All program synthesis
processes must have some means of determining what elements
comprise a problem’s instruction set, and the experiments discussed
below are intended to show the impact of making these sets more
or less fine tuned, which impacts all GP systems.

The ideas of transfer learning of instruction sets should be tested
in other GP systems (such as grammar-guided GP or grammatical
evolution) or even in other problem domains. While the instruc-
tion sets in typical GP applications such as symbolic regression
tend to be much smaller than those with 100+ instructions in our
PushGP experiments, we could imagine that tuning probabilities of
using each instruction for random code and mutation could provide
benefits in these other domains.
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