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ABSTRACT
Counterexample-driven genetic programming (CDGP) uses spec-
ifications provided as formal constraints in order to generate the
training cases used to evaluate the evolving programs. It has also
been extended to combine formal constraints and user-provided
training data to solve symbolic regression problems. Here we show
how the ideas underlying CDGP can also be applied using only user-
provided training data, without formal specifications. We demon-
strate the application of this method, called “informal CDGP,” to
software synthesis problems.
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1 INTRODUCTION
The bulk of the computational effort required for genetic program-
ming is expended in the evaluation of the errors of programs in
the evolving population. Typically, each program is evaluated on
many inputs, which are generally referred to as “fitness cases” or
“training cases.” In most prior work, the set of fitness cases that
will be used for program evaluation during evolution is specified
in advance of the genetic programming run, and all available cases
are used for each program evaluation.

A recent method [1, 2, 5, 6] for decreasing the number of cases
needed to evaluate each individual generates new cases on the basis
of formal specifications for the problem that genetic programming
is being employed to solve, that are not yet correctly handled by the
programs in the population. These “counterexamples” provide more
focused guidance to the evolutionary process than do random test
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cases, and appear to direct evolution more specifically to master
aspects of the target problem that are not properly handled by
individuals in the current population. This approach is known as
“counterexample-driven genetic programming,” or CDGP.

In this paper we describe a new method, inspired by CDGP,
that does not require formal specifications. The approach that we
describe, “informal CDGP,” (iCDGP) evaluates individuals during
evolution using only a small sub-sample of the user-provided fitness
cases, allowing more individuals to be assessed within the same
computational budget. The fitness cases that are used are not chosen
randomly, but rather are chosen to be counterexamples for the best
individuals in the current population. This allows iCDGP to direct
evolution in much the same way as CDGP, but without requiring
that the user provide formal specifications for solutions to the
target problem. Since we do not have formal specifications, we
instead expect the problem to be defined by a full training set of
input/output examples, typically numbering 100 or more, which
we call T .

In informal CDGP, we use an active training set, TA ⊆ T , that
GP uses to evaluate the individuals in the population. In all of
our experiments, TA initially contains 10 random training cases
from T , although other sizes could be used. During evolution, if
an individual is found that passes all of the cases in TA, we test
the individual on all of the cases in T ; if it also passes all of them,
then it is a training set solution and GP terminates. Otherwise, we
select a random case in T that the individual does not pass, add it
toTA, and continue evolution. Note that if multiple individuals in a
generation pass all of the cases in TA, each of them goes through
this process, potentially adding multiple new cases to TA for the
next generation.

Given that we already have a set of training cases, why does
informal CDGP use a smaller, likely less-informative set of active
training cases instead of just using all available training data? As
with other approaches based on the sub-sampling of fitness cases
([3]), a smaller active training set allows us to perform fewer pro-
gram executions per generation, making each generation computa-
tionally cheaper than if using the full set of training cases. In our
experiments, we compare methods based on the same maximum
number of program executions, allowing informal CDGP to run for
more generations than standard GP while using the same total pro-
gram executions. Additionally, the informal CDGP idea of adding
a counterexample case to TA that the best individual doesn’t pass
(borrowed from formal CDGP) allows it to augment the training
set in ways that specifically direct GP to solve difficult parts of the
problem.
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Figure 1: Number of successes out of 100 GP runs for three
settings of the number of generations d between case addi-
tions in generational-based informal CDGP.

2 EXPERIMENT
We conducted experiments using the PushGP genetic programming
system [7] and problems from the “General Program Synthesis
Benchmark Suite” [4].

We explored several variants of iCDGP, each of which provided
a different approach to the question of when new cases should be
added to TA aside from the condition that normally triggers case
additions, in which an individual is found that passes all of the
cases currently in TA. If no progress is being made on the current
set of cases for some time, then we would like to add new cases
nonetheless, in the hope that the augmented set of cases will provide
more guidance to the search. There are several options for when
and how such supplementary additions might be made.

Of the many variants of iCDGP we tried, the most promising
one uses generation-based additions, where we add a new case to
TA every time d generations have passed without a new case being
added otherwise; this case is one at which the population performs
worst.We tried three settings ford : 25, 50, and 100 generations. Note
that failed informal CDGP runs often finished after 1000 to 3000
generations, depending on how many cases are added to TA. We
present results out of 100 runs using generation-based addition with
iCDGP in Figure 1. This shows that on many problems, especially
more difficult problems that are solved less often overall, iCDGP
with generation-based additions significantly outperformed using
the full training set as well as plain iCDGP.

3 CONCLUSIONS AND FUTUREWORK
We conclude that informal counterexample-driven genetic program-
ming (informal CDGP) advances the state of the art for software

synthesis by genetic programming. The results documented here
are better, as far as we know, than any previously published for this
set of benchmark program synthesis problems. The informal CDGP
approach builds on the recent advance provided by formal CDGP,
but it is likely to be more widely applicable because it does not re-
quire a formal specification of solutions to the target problem. The
same set of test inputs that would be used for traditional genetic
programming can be used for informal CDGP, with the only differ-
ence being that they will be used differently. Specifically, informal
CDGP begins with a small initial subset of the cases, and augments
the subset with counterexamples whenever an individual passes all
of the current cases, or whenever some number of generations has
passed.
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