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ABSTRACT
In genetic programming, the parent selection method determines
which individuals in the population are selected to be parents for the
next generation, and how many children they create. This process
directly impacts the search performance by determining on which
areas of the search space genetic programming focuses its attention
and how it balances exploration and exploitation. Many parent
selection methods have been proposed in the literature, with aims
of improving problem-solving performance or other characteristics
of the GP system. This paper aims to benchmark many recent
and common parent selection methods by comparing them within
a single system and set of benchmark problems. We specifically
focus on the domain of general program synthesis, where solution
programs must make use of multiple data types and control flow
structures, and use an existing benchmark suite within the domain.
We find that a few methods, all variants of lexicase selection, rise to
the top and demand further study, both within the field of program
synthesis and in other domains.
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1 INTRODUCTION
In this paper, we benchmark the performance of a set of 21 par-
ent selection methods from the literature on 12 problems from
the “General Program Synthesis Benchmark Suite” [3]. These prob-
lems expect a synthesis system to produce the types of programs
that humans write, and require multiple data types and the use of
control flow structures to solve. While our results only examine
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performance in the program synthesis domain, we expect that the
findings will roughly translate to other domains as well.

This study considers some parent selection methods that have
previously been tested on these program synthesis benchmark
problems, as well as many selection methods that have not. Many
of the methods we test are variants of either tournament selection
or lexicase selection [4]. We include many selection methods that
are popular in GP and evolutionary computation more generally,
as well as some recently-published methods.

Others have benchmarked parent selection in GP and evolution-
ary computation more generally. Early work in genetic algorithms
compared tournament selection, fitness-proportionate selection,
ranking selection, and steady-state evolution [2]. More recently, a
study of selection methods that sample the training set compares
some of the methods we consider in this work [7]. While others
have benchmarked some of the methods we consider, our study
contains a larger breadth of parent selection methods than any
study of which we are aware. Additionally, to our knowledge this
is the first study to extensively benchmark the effects of parent
selection on general program synthesis problems.

Our results show that lexicase selection variants perform far
and away better than other methods, with lexicase-based methods
dominating the top half of the ranking. In particular, down-sampled
lexicase [1, 5] gave the best performance, placing in the top few
positions on almost all of our 12 benchmark problems.

2 BENCHMARKING RESULTS
We use the PushGP genetic programming system to evaluate each
parent selection method [9]. We measure performance as the num-
ber of successful runs out of 100 for each method. For this shortened
paper, we will just give the average ranking of each method across
the benchmark problems. We also do not have enough room to
describe each method, though many can be found in the literature.

We present the average rankings of eachmethod across the tested
benchmark problems in Table 1. The main thing to notice is that the
11 algorithms that use or are based on lexicase selection fall within
the first 12 spots in the list. Only pooled lexicase selection had a
worse average ranking than the best tournament-based approach,
which was batch tournament selection.

To give more detail about the best-performing methods, we plot
the success rates of the top four lexicase selection variants as well
as standard lexicase selection on each problem in Figure 1. One
highlight here is that while down-sampled lexicase performs about
as well as others on easier problems, it gives much better results
on the five most difficult problems than any of the other methods,
leading it to top the list of average ranks.
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Table 1: Average ranking of each of the 21 parent selection
methods across 10 benchmark problems, not including the
Mirror Image or Smallest problems.

Method Average Ranking
Down-sampled lexicase 2.2
MADCAP ϵ-lexicase 4.7
ALPS with lexicase 5.4
Median lexicase 5.8
Knobelty 6.1
Ranked shuffle lexicase 6.2
Lexicase 6.2
Novelty-lexicase 6.6
ϵ-lexicase 7.3
Batch lexicase 8.8
Batch tournament 10.5
Pooled lexicase 10.8
Pareto tournament, age 14.6
Implicit fitness sharing 15.1
Tournament 15.2
ALPS tournament 15.5
Interleaved sampling 16.0
Pareto tournament, size 18.0
Fitness-proportionate 18.3
Novelty search 18.8
Uniform 18.9
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Figure 1: Number of successes out of 100 PushGP runs. This
figure shows standard lexicase and the four best lexicase
variants.

3 DISCUSSION AND CONCLUSIONS
This paper benchmarks 21 GP parent selection methods on 12 prob-
lems from a program synthesis benchmark suite, finding that some
methods perform much better than others in this domain. In partic-
ular, lexicase selection variants outperform all others, and down-
sampled lexicase gave the best success rates of all. We find that
many common parent selection methods, such as tournament selec-
tion, fitness-proportionate selection, and novelty search perform
poorly in this setting.

Down-sampled lexicase selection [1, 5] performed best of any
of the methods tested in this paper. We attribute down-sampled
lexicase selection’s success to it using a smaller subsample of the
training cases to evaluate each individual, resulting in fewer pro-
gram executions per generation and therefore more generations
per run. Unless stuck in a local optima, having more generations
usually means better performance on the given problem, as more
individuals are considered over the course of the evolutionary pro-
cess.

The second best method in our experiments, MADCAP ϵ-lexicase
selection [8], is a variant of lexicase selection that falls somewhere
between standard lexicase and ϵ-lexicase [6]. This method uses
normal lexicase half of the time, and the other half of the time lets
any individual survive that is within some ϵ of the best individual.
The relaxation of lexicase may allow some individuals to be selected
that have poor errors in a few cases.

The dominance of lexicase-based variants in our benchmarking
compared to tournament-based variants clearly shows the benefits
of the underlying algorithm compared to methods that aggregate
fitness into a single value. While the differences were only signifi-
cant for some specific comparisons, the fact that 11 of the first 12
methods (and all of the first 10) in our average rankings are based
on lexicase selection shows that it, at this point in time, has no peer
when using GP to solve program synthesis problems. That said, our
results suggest that some lexicase variants are worse than others for
program synthesis; we would recommend against using ϵ-lexicase,
batch lexicase, or pooled lexicase in this domain.
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