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Abstract Semantic-aware methods in genetic programming take into account in-
formation about programs’ performances across a set of test cases. Lexicase parent
selection, a semantic-aware selection, randomly shuffles the list of test cases and
places more emphasis on those test cases that randomly appear earlier in the order-
ing than those that appear later in the ordering. In this work, we explore methods
for weighting this shuffling of test cases to give some test cases have more influ-
ence over selection than others. We design and test a variety of weighted shuffle
algorithms and methods for weighting test cases. In experiments on two program
synthesis benchmark problems, we find that none of these methods significantly
outperform regular lexicase selection. We analyze these results by examining how
each method affects population diversity, and find that those methods that perform
much worse also have significantly lower diversity.

1 Introduction

Many different types of problems typically tackled by genetic programming (GP),
including symbolic regression, classification, and program synthesis, require a pro-
gram that performs well on a set of tests, which we will call test cases. On such
problems, each program is evaluated on each test, producing an error vector that
summarizes its performance on the tests. These error vectors typically provide all of
the information used to determine which individuals in the population are selected
to be parents of the next generation.
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In many parent selection methods, such as the pervasive tournament selection,
each error vector is aggregated into a single fitness value that represents the per-
formance of an individual on the problem. Such methods ignore a wide range of
behavioral and semantic information that could potentially be used to more effec-
tively guide search [22, 16]. Recently, researchers have started incorporating this
information in their GP systems, such as in the case of geometric-semantic GP [23],
behavioral programming [15], and other semantic-aware methods [19].

One recent semantic parent selection method, lexicase selection, has been shown
to improve problem-solving performance on a range of problems compared to tour-
nament selection [9, 8] and other semantic-based selection methods [19]. These en-
couraging results suggest not only that lexicase selection deserves careful analysis
of how it contributes to these improves results, but also whether there are modifica-
tions that could be made in order to improve its performance further. In this study,
we explore variants of lexicase selection in which we modify how it considers the
test cases and their order.

An essential part of the lexicase selection algorithm consists of randomly shuf-
fling the test cases. It then considers the test cases in the shuffled ordering, with test
cases earlier in the ordering receiving more attention than those later in the order-
ing. Traditionally, this shuffling has been conducted in a uniform fashion, with each
test case having equal probability of appearing at any position [26]. While many
people have asked us personally if it would be useful to weight the shuffling so that
some test cases are more likely to come earlier in the shuffling than others, to our
knowledge this has not been tested in practice.

In this paper we explore the idea of weighting the shuffle of test cases in lexi-
case selection. One key question, that does not seem to have an obvious theoretical
answer, is how should the test cases be weighted? Should easier test cases appear
earlier in the ordering, or should harder cases appear earlier? We could imagine it
being better for easier test cases to appear earlier, since this may allow evolution to
make small steps to improve slowly over time. On the other hand, maybe it would
be better to have harder test cases appear earlier, which could reward programs that
perform well on test cases on which the rest of the population performs poorly. Since
we do not know the best method for weighting shuffle, here we conduct an empirical
investigation of a variety of methods, some of which place easier test cases earlier,
some of which place harder test cases earlier, and some of which dictate order based
on variance.

Our experiments on two program synthesis problems show a surprising result:
while some of the weighting methods reduce the performance of lexicase selection,
none of them significantly improve performance. To help explain this result, we
examine how each method affects population diversity throughout each GP run. We
find that many of the methods result in significant reductions in diversity, and none
appear to increase diversity compared to regular lexicase selection. Since we believe
that diversity maintenance is an important feature of lexicase selection, these results
help explain the cases where shuffling methods perform much worse.

In the next section, we give a detailed description of lexicase selection and prior
results that use it. In Section 3, we describe the weighted shuffling algorithms and
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Algorithm 1 Lexicase Selection (to select one parent)
Inputs: candidates, the entire population; cases, a list of test cases
Shuffle cases into a random order
loop

Set f irst be the first case in cases
Set best be the best performance of any individual currently in candidates on f irst
Set candidates to be the subset of candidates that have exactly best performance on f irst
if |candidates|= 1 then

Return the only individual in candidates
end if
if |cases|= 1 then

Return a randomly selected individual from candidates
end if
Remove the first case from cases

end loop

our methods for weighting test cases. Next, we discuss the design of our experiments
on weighted shuffle, and present results from those experiments. We finally give
some examples of related parent selection techniques.

2 Lexicase Selection

Lexicase selection is defined in terms of test cases, i.e. the data points used to eval-
uate the performance of individuals in the population. While we treat test cases as
input/output pairs of the form used in supervised learning, lexicase selection could
work in any population-based search technique where individuals are evaluated on
multiple metrics. Lexicase parent selection was motivated by the desire of having
parent selection treat individual test cases separately, without ever comparing the
results of programs on one test case with the results on another [9, 26].

Algorithm 1 presents the lexicase selection algorithm. During lexicase selection,
we consider one test case at a time, whittling down the population by removing any
individual that does not exhibit the very best performance on that case. Once a single
individual remains, it is returned. If we iterate through every test case and multiple
individuals remain, that means those individuals have identical error vectors, so we
return one of them at random. In practice, we actually retain only one random in-
dividual per error vector prior to each lexicase selection, since this gives the exact
same results and reduces the time required to filter the population at each step.

A key element of the lexicase selection algorithm is that the test cases are shuffled
into a different order for selecting each parent. The test cases at the start of the
shuffled list have the most impact on selection, since they have potential to filter
out the most individuals from the pool. Many times, a test case near the end of
the shuffled list will have no bearing on which individual is selected, if the set of
candidates is whittled to a single individual before using every test case. In this way,
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lexicase selection often selects specialist individuals that perform poorly on some
cases as long as they perform very well on the cases at the start of the ordering [4].

Empirical studies have shown lexicase selection to increase and maintain much
higher levels of behavioral diversity than tournament selection [5, 6]. These effects
on diversity are thought to be a consequence of lexicase selection’s emphasis on
selecting different specialist individuals. In particular, since lexicase selection uses
a different ordering of test cases for each selection, it is able to reward individuals
that do well on different parts of a problem. Tournament selection, on the other hand,
computes a single fitness value aggregating a program’s performance across all test
cases. No matter how this aggregation is performed (e.g. summed errors, implicit
fitness sharing [20], etc.), it emphasizes the selection of generalist individuals that
perform well across all test cases. An individual can achieve terrible fitness and low
probability of being selected by tournament selection if it performs very poorly on
a single test case, even if it has excellent performance on all other cases; such an
individual would often be selected by lexicase selection.

Other variants of lexicase selection have made alterations to other parts of the
algorithm. In the initial work describing lexicase selection, what is now consid-
ered standard lexicase selection was described as “global pool, uniform random
sequence, elitist lexicase parent selection” [26]. Each of these areas suggests part of
the algorithm that could be changed. For example, “elitist” refers to the fact that only
those individuals with exactly the best error on a test case will continue. This con-
straint has been relaxed in epsilon lexicase selection, in which any individual with
an error value within an “epsilon” of the best error value on a case will continue to
the next step [18, 17]. This variant has proved very successful on continuous-error
problems, for which lexicase selection had previously performed poorly.

Since the test cases at the start of the shuffled list of cases have the most impact
on selection, every selection will treat some cases as more important than others, but
those cases will be different in different selection events. As indicated by “uniform
random sequence” above, most work has used a uniform shuffling of test cases,
giving each case equal probability of appearing at any point in the shuffled order.
Since the invention of lexicase selection, many researchers (the authors included)
have speculated that there must be some better way to arrange the test cases than
using completely uniform shuffling. In fact, Spector tested many ad-hoc methods
of weighting the test case shuffle around the time lexicase selection was invented,
but none of them proved superior in initial testing [25]. Burks and Punch describe a
variant of lexicase selection that does not use uniform shuffling of test cases, which
we discuss in more detail below and use as a comparison [1].

3 Weighted Shuffle

In our experiments, we consider three different methods for shuffling the test cases
in a non-uniform manner for lexicase selection. Each of these shuffling methods
requires a technique for weighting or ordering the test cases, which we will call the
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bias metric. The bias metric, when applied to a test case, will produce the weight
for that test case.

3.1 Shuffling Methods

Weighted shuffle first scores each test case by the chosen bias metric, assigning
the result as the weight for the case. Then, a list of test cases is built by selecting
cases one at a time, with higher weighted test cases having a greater chance of being
selected at each step. The weighted selection can be modeled with a roulette wheel.
If a test case has a higher weight on the bias metric, its slice of the roulette wheel
is larger. We then randomly select a test case based on these slices. This process is
repeated until we have a weighted ordering of the test cases. This Weighted shuffle
is repeated for every parent selected during a generation, meaning that different
orderings will occur during the generation, but they will all use the same weights
when performing the shuffle.

This Weighted shuffle algorithm, as far as we can tell, is a standard method for
performing weighted shuffle. For example, this is the weighted shuffle implemented
in Haskell [2].

Ranked shuffle takes the test cases and ranks them by the selected bias met-
ric. Ranked shuffle then selects a random integer upper bound, uniformly selected
between 1 and the number of test cases inclusive. Next, another uniform random
integer is selected between 1 and that upper bound, inclusive; this is the index of the
chosen test case. The test case at this index becomes the first test case in the new
shuffled order. This same process then repeats for the remaining cases, adding each
selected case to the end of the list so far. With this method, the test cases with a
better rank (ex. 1, 2, 3, ...) are more likely to be chosen at each step because they are
more likely to be within the range from 1 to the selected upper bound. The motiva-
tion for Ranked shuffle is that the chance of being selected is based on rank, instead
of weight, and thus will not be as skewed by large differences in weight.

During each step of the Ranked Shuffle process, we choose a case out of T test
cases. The case with rank t ∈ 1, ...,T has probability of being selected of

P(t) =
1
T

T

∑
i=t

1
i
,

which can be seen because it will have 1/i chance of being chosen for each index
i≥ t. This distribution is “a discretized version of the negative log distribution” [3],
and for every integer t ∈ 1, ...,T , is equivalent to

P(t) =
− log(t/T )

T
.

Fixed-order lexicase-based tournament selection (FOLBaT) is what we will
call a a variant of lexicase selection introduced by Burks and Punch that does not
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use uniform shuffling of test cases [1]. In fact, they use a fixed ordering of the test
cases for every selection in a generation, instead of shuffling the test cases at all.
They base this ordering on how well the population performs on the test cases that
generation, with more difficult test cases coming first. Since the test case ordering is
fixed each generation, if the entire population were used in each selection, the same
exact individual would be selected every time. Instead, this method only applies
lexicase to a subset of the population, as in tournament selection. Thus we will call
this method fixed-order lexicase-based tournament selection.

For each generation, the test cases are ordered deterministically for every selec-
tion (although ties are broken randomly for each selection). The original work using
FOLBaT selection uses test case orderings sorted by two different bias metrics: the
Number-of-Nonzeros and Average metrics described below [1]. We use tournament
size of 7, and experiment with using other bias metrics as well.

3.2 Bias Metrics

Some of our bias metrics tend to order “easier” test cases earlier, some order
“harder” test cases earlier, and some base the ordering on the variance of the popu-
lation error values on the cases. The Number-of-Zeros metric counts the number of
individuals in the population that achieve zero (i.e. perfect) error on the given test
case. This means that easier test cases that the population tends to get correct more
often are given more weight, and therefore tend to appear earlier when shuffled. The
Number-of-Zeros-Inverse metric simply divides 1 by the Number-of-Zeros metric.
Thus, the weights are inverted, and more difficult test cases will be more likely to
appear earlier when shuffled.

Similarly, the Number-of-Nonzeros metric counts the number of individuals in
the population that do not achieve zero error on the test case. Thus it orders harder
cases earlier. Note that this weighting is not equivalent to the the Number-of-Zeros-
Inverse weighting, since the relative weights will be different between test cases.
As we will see below, this difference is not simply theoretical, since these methods
give significantly different results in our empirical tests. We also try a Number-
of-Nonzeros-Inverse metric that, as above, divides 1 by the Number-of-Nonzeros
metric.

We could also imagine that there might be more information in the actual error
values for each test case, not just whether an individual perfectly passes the case or
not. Thus, we use a Median metric, which uses the median error in the population
on a test case as its weight. In this setting, a higher median error will give more
weight to the test case, so harder cases will come earlier. We also test a Median-
Inverse metric, with which easier cases will come first. We also use an Average
error metric, though we do worry that outliers may make some test cases dominate
the weighting. The original FOLBaT paper used Average, so here it serves as a
comparison metric [1]. Again, higher average error will give more weight, so harder
cases will come earlier.
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Finally, we also could imagine that it would be useful to have cases that differen-
tiate more between individuals to come earlier; thus, we also try a Variance metric,
which uses the variance of errors on a test case as its weight. Thus cases that have
more varied errors will come earlier in the ordering. To be thorough, we also include
a Variance-Inverse metric, where cases that have less divergent errors tend to come
first.

4 Experimental Setup

We conducted experiments to compare our weighted shuffle lexicase selection vari-
ants to regular lexicase selection. Below we describe the experiments, including the
problems and GP system we used.

4.1 Problems

For our experiments, we use two general program synthesis problems from a recent
benchmark suite [8]. The problems in this suite, which are taken from introductory
programming textbooks, require a range of data types and programming constructs
to solve. We chose problems for which lexicase selection has performed well but has
also showed room for improvement, so that we can expect important differences in
performance to be visible. The first problem, Replace Space With Newline (RSWN),
requires a program to take a string as input and print the string after replacing all
spaces in the input with newline characters. It also requires the program to func-
tionally return an integer representing the number of non-whitespace characters in
the input. The second problem, Syllables, also gives a string as input. The program
must count the number of vowels in the string, and then print that number as X in
the string "The number of syllables is X".

In each of our experiments, we report the number of successful programs out of
100 runs. Here, a program must pass both the test cases used during evolution as
well as an unseen test set in order to be called a solution. We created the both data
sets using the methods described with the benchmark suite [8]. We will also plot
the median behavioral diversity of populations across sets of runs, which is defined
as the proportion of distinct behavior vectors of individuals in the population [11].
Here, a behavior vector is the list of outputs of a program when run on the test cases.

4.2 Push and PushGP

For our experiments, we use the PushGP system, which has previously been used
extensively on the benchmark problems we use here [8, 7, 21, 5, 4]. PushGP evolves
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Table 1 PushGP parameters used in our experiments.

Parameter Value

runs per problem/parameter combination 100
population size 1000
maximum generations 300

Genetic Operator Prob

alternation 0.2
uniform mutation 0.2
uniform close mutation 0.1
alternation followed by uniform mutation 0.5

programs in the Push programming language, a stack-based language designed
specifically for GP [24, 27]. Push has many features that make it well-suited for
general-purpose program synthesis, such as the availability of many data types and
control-flow constructs. Besides the language it evolves programs in, PushGP is
otherwise a standard generational GP system. For this work, we use the Clojure
implementation of PushGP, which is currently the most actively-developed imple-
mentation1.

We give the PushGP parameters that we use in our experiments in Table 1.
Our experiments use Plush genomes, the linear genome representation of Push pro-
grams [10]. The genetic operators in Table 1 act on these Plush genomes. Alternation
is a crossover of two parents, and uniform mutation and uniform close mutation act
on one parent; more details can be found in [10].

5 Results

We present the number of successful runs out of 100 for each setting on the Replace
Space With Newline (RSWN) problem in Table 2 and the Syllables problem in Ta-
ble 3. As a comparison, regular lexicase found 54 successful programs on RSWN
and 22 successful programs on Syllables. The success results in these tables show
that none of the combinations of shuffle methods with bias metrics significantly
improve performance compared to regular lexicase selection. In fact, some give sig-
nificantly worse results, using a pairwise chi-square test with Holm correction for
multiple comparisons.

While we tried every bias metric with each shuffle method, some combinations
seem more relevant to consider than others. For example, in the paper describing
FOLBaT, the authors use the Number-of-Nonzeros and Average bias metrics [1].
Our results with FOLBaT are mixed for these metrics. In fact, we expected the
Weighted and Ranked methods to perform poorly with the Average bias metric,
since we imagined it could be heavily skewed by outliers. The results show that

1 https://github.com/lspector/Clojush

https://github.com/lspector/Clojush
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Table 2 Number of successes out of 100 runs on the Replace Space With Newline problem. Under-
lined results are significantly worse than regular lexicase selection, which produced 54 successes.
No results were significantly better than regular lexicase.

Type Bias Metric Weighted Ranked FOLBaT

Easy-First
Number-of-Zeros 13 40 6
Number-of-Nonzeros-Inverse 54 43 7
Median-Inverse 53 39 4

Hard-First

Number-of-Zeros-Inverse 52 49 35
Number-of-Nonzeros 61 44 40
Median 50 53 26
Average 33 45 17

Variance-Based Variance 30 57 11
Variance-Inverse 52 53 30

Table 3 Number of successes out of 100 runs on the Syllables problem. Underlined results are
significantly worse than regular lexicase selection, which produced 22 successes. No results were
significantly better than regular lexicase.

Type Bias Metric Weighted Ranked FOLBaT

Easy-First
Number-of-Zeros 20 12 7
Number-of-Nonzeros-Inverse 13 10 8
Median-Inverse 19 12 8

Hard-First

Number-of-Zeros-Inverse 11 16 2
Number-of-Nonzeros 17 14 3
Median 20 17 6
Average 14 15 5

Variance-Based Variance 11 13 20
Variance-Inverse 16 19 10

while neither performed exceptionally well with Average, neither did exceptionally
poorly either.

With the Ranked shuffle and FOLBaT, two sets of two methods should produce
equivalent rankings of cases and therefore comparable results. That is, Number-of-
Zeros and Number-of-Nonzeros-Inverse should behave identically, since counting
the number of zeros will produce the same ordering of test cases as taking the inverse
of the number of nonzeros. Similarly, Number-of-Zeros-Inverse and Number-of-
Nonzeros should also behave equivalently with Ranked shuffle. As expected, the
numbers of successes for each of these combinations is not significantly different
from one another. This equivalency does not hold for Weighted shuffle, where the
relative differences in weight matter for the shuffle.

Figure 1 plots the average population behavioral diversity for each bias metric
when using Weighted shuffle on the RSWN problem. This plot shows that Weighted
shuffle is not able to produce significantly higher levels of behavioral diversity than
regular lexicase selection, no matter what bias metric is used. While many of the bias
metrics produce similar diversity to regular lexicase, a few result in significantly
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Fig. 1 For Weighted shuffle, the average population behavioral diversity of each bias metric plot-
ted over the generations of each set of runs on the RSWN problem. Note that the black Regular-
Lexicase line is mostly hidden behind the red Median line.

worse diversity. This is especially apparent with Number-of-Zeros, Variance, and
Average, the three bias metrics that performed worst on this problem, showing a
correlation between poor performance and poor diversity.

Figure 2 gives the same diversity plots, except for the Ranked shuffling method.
Here, we see diversity more akin to that of regular lexicase, though many of the
bias metrics have lower diversity in the first 150 generations of runs. There does not
seem to be much correlation between diversity and success rate, with some of the
metrics that create lower diversity still finding comparable numbers of solutions.

Finally, we give the diversity results for FOLBaT in Figure 3. Most of the bias
metrics we used with FOLBaT do not exhibit the ability to increase and maintain di-
versity shown by regular lexicase selection. The two exceptions are with the Median
and Average bias metrics; these metrics achieve high levels of diversity, although
still lower than with regular lexicase. Interestingly, both of these metrics performed
poorly in success rates, while some metrics with lower levels of diversity performed
significantly better.
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Fig. 2 For Ranked shuffle, the average population behavioral diversity of each bias metric plotted
over the generations of each set of runs on the RSWN problem.

6 Discussion

Both Weighted shuffle and Ranked shuffle perform about as well as regular lexicase
for most of the bias metrics. Weighted shuffle had slightly better results than Ranked
shuffle with the bias metrics that gave the best results, but also much worse results
with the worst bias metrics. FOLBaT, on the other hand, was often significantly
worse than regular lexicase, with every bias metric except Variance-Inverse giving
significantly worse results on one of the two problems.

As for the bias metrics, none stand out as particularly good or bad on these two
problems, at least when only considering Weighted and Ranked shuffles. In fact,
some of the bias metrics that give the worst results on one problem give the best
results on the other problem.

The success rate results show that none of our combinations of shuffle methods
with bias metrics resulted in significantly better results than with regular lexicase,
which does not weight the shuffling of test cases. Thus it is difficult to recommend
any of these shuffle methods or bias metrics over regular lexicase selection. Why,
we must ask, does this intuitive idea of weighting the shuffling of test cases not lead
to improvements?

Although we do not have any quantitative data, we have seen anecdotal evidence
that suggests that with Weighted shuffle, some of the bias metrics that perform best
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Fig. 3 For FOLBaT, the average population behavioral diversity of each bias metric plotted over
the generations of each set of runs on the RSWN problem.

often use near-uniform distributions of test cases when shuffling. Test cases have
similar or identical weights when most individuals in the population perform sim-
ilarly on them. When most or all test cases have similar wights, Weighted shuffle
acts very similarly to the uniform shuffle used by regular lexicase selection. Thus, it
is not surprising that bias metrics that use near-uniform shuffling of test cases will
give good performance results similar to regular lexicase selection. What is sur-
prising is that many of the bias metrics that produce more weighting of test cases
perform poorly, suggesting simply that weighting the shuffle leads to poor results.
Note that these anecdotes only apply to Weighted shuffle, since the other shuffle
methods result in different distributions of shuffles.

One possible explanation for the significantly worse results that we do see with
some bias metrics with Weighted shuffle, and the slightly worse results for Ranked
shuffle, is that they over-concentrate on some test cases while ignoring others. Such
behavior may reduce the population diversity by limiting which test cases influence
selection.

Turning attention to the diversity figures, we note that maintaining high diversity
is somewhat correlated to better performance, but not always. In some cases, low
diversity may play a large part in poor performance, especially with FOLBaT. But,
this correlation does not always hold; for example, with Ranked shuffle, the Variance
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bias metric had the highest number of success, yet exhibited some of the lowest
diversity in the first half of runs.

Of the three shuffle methods, FOLBaT performed the worst and also the exhib-
ited the lowest diversity. We believe this lack in diversity is caused by FOLBaT
not using different orderings of test cases. This feature of lexicase selection allows
it to emphasize different test cases with each selection, and therefore select many
different individuals that perform well on different tests. Since FOLBaT doesn’t
shuffle the test cases at all, it always emphasizes the same cases within a generation.
FOLBaT’s reliance on a single sorting of the test cases gives a total ordering of the
population, which can be seen as a scalar fitness value assigned to each individual
based on rank. It only selects different individuals because it uses a tournament, and
therefore the best individuals for each generation’s ordering will not be present in
every tournament. Avoiding a scalar fitness value is one of the key tenants of lexi-
case selection. This use of a scalar fitness value, a characteristic that it shares with
tournament selection, may explain FOLBaT’s inability to increase and maintain di-
versity, similar to tournament selection [6].

What does this teach us about lexicase selection? Lexicase selection’s ability to
emphasize different test cases with each selection seems paramount to its ability to
maintain diversity, by selecting a wide range of individuals that specialize in differ-
ent combinations of test cases. Using non-uniform shuffle decreases this uniformly
random aspect of lexicase selection, which seems to have a neutral or negative im-
pact on results.

Additionally, lexicase selection already places emphasis on individuals that
uniquely perform well on single or multiple test cases, especially if such individ-
uals also perform well on other cases. It appears to not be useful to place extra
emphasis on some test cases; such favoring does not add utility to how often those
cases appear early in the shuffle, and other times could lead to other cases being
under-emphasized.

7 Related Work

The primary idea behind this work, that some test cases should be emphasized more
than others based on how well the population performs on them, shares motivation
with other parent selection methods. Each of the following methods uses tournament
selection, but modifies fitness calculations in some way. In implicit fitness sharing
(IFS), fitness is weighted so that test cases that are solved by fewer individuals re-
ceive more weight [20]. On problems such as those in this paper where test cases are
non-binary, it is necessary to use a non-binary adaptation of IFS [14]. Earlier work
showed that this non-binary IFS produced significantly worse results than lexicase
selection on the two problems presented here, and on the benchmark suite that the
problems come from more generally [8]; it has also been shown to produce lower
levels of population diversity [5].
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In “co-solvability” fitness, IFS has been extended to not weight individual cases,
but instead pairs of test cases [13]. In this way, individuals that solve pairs of
test cases not often solved by other individuals receive more reward. “Historically-
assessed hardness” is another generalization of IFS to non-binary test cases, where
fitness on each test case is scaled based on the performance of the population [12].

8 Conclusions and Future Work

This work demonstrates that using weighted shuffle of the test cases in lexicase se-
lection does not increase the performance of GP. Over a wide array of methods for
biasing the shuffle, including some that emphasize easy test cases and some that em-
phasize difficult test cases, we do not see any significant gains in performance com-
pared to regular lexicase selection. We note a correlation between success rate and
the ability to maintain diversity across some of our experimental results, in which
methods that produced lower diversity were also those with the worst performance,
though this correlation does not hold across the board.

These results, while discouraging with regard to improving performance, do sug-
gest that it is not necessary to use any additional test case shuffling scheme in order
to achieve good results with lexicase selection. Thus we recommend the continued
use of lexicase selection with uniform random shuffling.

We hypothesize that one potential problem with the shuffle methods we present
here is that they over-emphasize certain cases, which over-selects specific members
of the population. In the future, we could consider whether there are ways to not
over-emphasize specific test cases while still performing weighted shuffling. Such
a scheme may be able to achieve better performance results while maintaining high
levels of diversity. On the other hand, the resulting shuffles will be more similar
to uniform shuffling, and therefore may simply behave more similarly to regular
lexicase selection.
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