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ABSTRACT
Lexicase selection is a parent selection method that has
been shown to improve the problem solving power of ge-
netic programming over a range of problems. Previous work
has shown that it can also produce hyperselection events,
in which a single individual is selected many more times
than other individuals. Here we investigate the role that
hyperselection plays in the problem-solving performance of
lexicase selection. We run genetic programming on a set of
program synthesis benchmark problems using lexicase and
tournament selection, confirming that hyperselection occurs
significantly more often and more drastically with lexicase
selection, which also performs significantly better. We then
show results from an experiment indicating that hyperselec-
tion is not integral to the problem-solving performance or
diversity maintenance observed when using lexicase selec-
tion. We conclude that the power of lexicase selection stems
from the collection of individuals that it selects, not from the
unusual frequencies with which it sometimes selects them.

CCS Concepts
•Computing methodologies→Genetic programming;
Heuristic function construction;

Keywords
lexicase selection; tournament selection; hyperselection; pro-
gram synthesis

1. INTRODUCTION
Evolutionary computation systems direct search through

the selection of individuals, with the goal of refining and re-
combining promising programs to produce better ones. Se-
lection can be applied at various stages of the evolutionary
algorithm, but in genetic programming it is generally ap-
plied only when choosing parents. That is, a parent selection
method chooses the individuals to vary to generate offspring,
typically through recombination and mutation. Different
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parent selection methods will select parents with different
frequencies, directing the search in different ways.

For problems involving multiple test cases, most parent se-
lection methods select on the basis of aggregate performance
across all test cases. For example, when using tournament
selection, one first calculates the fitness of each individual
as the total or average error across all test cases. Then, one
conducts tournaments in which the program with the best
fitness wins and is selected as a parent.

Lexicase selection chooses parents based not on aggregate
performance across all test cases, but instead on perfor-
mance on individual test cases, considered one at a time
in random order. Lexicase selection shares some character-
istics with other behavior-based selection mechanisms that
consider test cases individually instead of in aggregate [11,
12]. It differs from these other methods in the way in which
it emphasizes different combinations of test cases in each
selection. The lexicase selection algorithm is described in
detail in Section 2.

In previous work, lexicase selection has been shown to sig-
nificantly enhance the problem-solving power of genetic pro-
gramming compared to standard tournament selection, and
to tournament selection with implicit fitness sharing [13],
where the aggregate measure is weighted by case difficulty.
For example, it has improved performance when finding
terms in finite algebras, designing digital multipliers, pro-
ducing programs that replicate the wc command, and per-
forming symbolic regression of the factorial function [8]. In
other work it was shown to significantly enhance the ability
of genetic programming to solve the problems in a general
program synthesis benchmark suite [7, 5].

Subsequent investigations have focussed on why lexicase
selection often enhances problem-solving performance, with
an eye toward refinement of the method or the development
of more powerful methods. For example, studies of pop-
ulation diversity under lexicase selection have shown that
it tends to produce and maintain significantly more diverse
populations than those produced by tournament selection
with or without implicit fitness sharing [6]. Another study
showed that it tends to produce and propagate specialist in-
dividuals that do well on some cases but poorly on others [5].

The study described in the present paper stems from an
observation that when lexicase selection is used, single indi-
viduals are sometimes exploited aggressively in the produc-
tion of the next generation, being chosen in an exceptionally
large number of parent selection events. This was discovered
in part through studies in which graph databases were used
to visualize the ancestries of evolved solution programs [14].
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We use the term hyperselection to describe events in which a
single individual is selected in a large percent of the parent
selections in a generation. Anecdotally, we have observed
cases in which a single individual is selected in over 90% of
the parent selection events in a single generation, and have
often observed a parent making up 5% or 10% of the selec-
tions. In some cases, individuals that are hyperselected have
relatively poor total error, but they nonetheless give rise to
progeny that evolve to solve the target problem. These ob-
servations strike us as remarkable, in part because the level
of hyperselection that we see with lexicase selection is not
even possible with many of the more commonly used selec-
tion methods, such as tournament selection.

Our observations of hyperselection events when using lex-
icase selection led us to hypothesize that hyperselection may
be partly responsible for the problem-solving power of lex-
icase selection, instead of simply being a side effect. To
test this hypothesis, we introduce a new sampled lexicase-
tournament selection method, which takes individuals from
a pool produced by lexicase selection but with frequencies
similar to those of tournament selection. If hyperselection is
responsible for the problem-solving performance of lexicase
selection, then sampled lexicase-tournament selection should
not perform as well as lexicase selection since it has similar
hyperselection characteristics to tournament selection. How-
ever, our results show that sampled lexicase-tournament se-
lection does indeed perform comparably to lexicase selection,
leading us to conclude that hyperselection does not play a
large role in lexicase selection’s success.

In the following section, we describe the lexicase selection
algorithm. In Section 3, we formally define hyperselection
and discuss the selection frequency profile of standard tour-
nament selection, in which hyperselection should be rare.
Our results in Section 4 confirm that high levels of hypers-
election are only present when using lexicase selection, and
not with tournament selection. We then investigate the
role that hyperselection plays in the problem-solving per-
formance of lexicase selection. Section 5 presents our ex-
periments with sampled lexicase-tournament selection. We
conclude that the power of lexicase selection stems from the
collection of individuals that it tends to select, not from the
unusual frequencies with which it sometimes selects them.

2. LEXICASE SELECTION
Lexicase selection is a parent selection method designed

for population-based stochastic search algorithms such as
genetic programming [8, 15]. It can be used any time that
potential parents are assessed with respect to multiple test
cases. Previous work has shown that lexicase selection can
effectively increase performance while also increasing behav-
ioral diversity on a variety of genetic programming prob-
lems [7, 8, 12, 6].

We outline the lexicase selection algorithm in Figure 1.
The key idea is that the test cases are randomly shuffled
for each selection event, and then considered in that order.
For each test case, the only individuals that are kept are
those whose error is minimal among those still under con-
sideration. This filtering is then repeated for each test case
until there is only a single individual left or until all the test
cases have been considered, in which case an individual is
randomly chosen from the remaining pool.

Because the ordering of the test cases is randomized for
each selection, the priority of test cases is different for each

To select one parent program for use in a genetic operation:

1. Initialize:

(a) Set candidates to be the entire population.

(b) Set cases to be a list of all of the test cases in the
training set in random order.

2. Loop:

(a) Set best to be the best performance of any indi-
vidual currently in candidates for the first case
in cases.

(b) Set candidates to be the subset of the current
candidates that have exactly best performance
on the first case in cases.

(c) If candidates contains just a single individual
then return it.

(d) If cases contains just a single test case then re-
turn a randomly selected individual from candi-

dates.

(e) Otherwise remove the first case from cases and
go to Loop.

Figure 1: The lexicase selection algorithm.

selection. Assuming the population size is considerably larger
than the number of test cases, this ensures that each test
case is most important (first in the order) for several of the
selections, and very important (in the early part of the or-
der) for many more selections. Conversely, a test case that
comes near the end of the ordering will only impact a se-
lection if a subset of the population performs equally well
on every test case before it. Since lexicase selection often
ignores test cases near the end of the ordering, it sometimes
selects specialist individuals that perform poorly on some
test cases but perform better than many individuals on one
or more other cases.

Since lexicase emphasizes different test cases in each selec-
tion event, it does not base selection on a single measure of
performance. Methods like tournament selection that use a
single fitness value tend to select generalist individuals that
have good average performance across all test cases, but may
not perform particularly well on any. This difference allows
lexicase selection to maintain higher population diversity by
emphasizing a different part of the problem for each selec-
tion, where tournament selection loses diversity by focusing
on individuals with good average performance. This differ-
ence in diversity maintenance has been shown empirically on
a number of program synthesis benchmark problems, where
lexicase selection substantially outperforms standard tour-
nament selection with or without implicit fitness sharing [7,
5] and typically maintains higher levels of diversity [6].

Other parent selection techniques have been invented to
achieve similar goals to lexicase selection [3, 9, 10, 4]. Be-
cause the aim of this paper is only to investigate the rela-
tionship between hyperselection and lexicase selection, and
not to compare lexicase selection to other selection methods,
further discussion of alternate selection methods is outside
the scope of this paper.



3. HYPERSELECTION
Observations of runs using lexicase selection have revealed

non-trivial levels of hyperselection, where individuals are se-
lected to produce large portions of the children in the next
generation.1 We say an individual is hyperselected at the
X% level if that individual receives at least X% of the par-
ent selections in a single generation. For example, an indi-
vidual that receives at least 170 selections out of 1700 total
in a generation is considered hyperselected at the 10% level
(as well as any level below 10%). Examining hyperselection
events can help us characterize how often single individuals
receive a large percent of the selections in their generations;
here, we will look at hyperselection events at the 1%, 5%,
and 10% levels. The 1% level represents individuals with
higher than typical impact on the next generation, where
the 5% and 10% levels identify individuals that significantly
influence the parent pool in their generations.

With tournament selection, the number of times an indi-
vidual can be selected is limited by the number of tourna-
ments in which it participates, a number which only depends
on the population and tournament sizes, not on the proper-
ties of the individual or other individuals in the population.
For example, if the best member of the population partici-
pates in 1.27% of the tournaments for a given generation, it
will be selected 1.27% of the time that generation, but no
more. Since the expected number of tournaments in which
each individual participates is constant for a particular pop-
ulation size P and tournament size t, the probability of an
individual being selected by tournament selection is entirely
determined by its rank in the population. In particular, the
probability of selecting an individual with rank i ∈ [1, P ],
with i = 1 being the best rank, is

p(i) =
(P − i + 1)t − (P − i)t

P t
(1)

assuming no two individuals have the same fitness [1, 2]; we
plot this probability mass function in Figure 2. Equation 1
does not hold exactly when there are ties in the rankings,
but is approximately correct unless there are many tied in-
dividuals.

From Equation 1, we see that when we use population
size 1000 and tournament size 7, the best few individuals
will be selected approximately 0.7% of the time each. This
also follows from the fact that every individual will partic-
ipate in approximately 0.7% of the tournaments, and the
best individual will win each tournament in which it par-
ticipates. With tournament selection it would therefore be
unlikely to hyperselect many individuals at the 1% level in a
generation, and extremely unlikely for any individuals to be
hyperselected at the 5% or 10% level. Empirical simulations
show that with population size 1000 and no ties, an average
of just over 2 individuals are hyperselected at the 1% level
each generation, and no individuals are hyperselected at the
5% or 10% level. These limited number of hyperselections
will be even lower if there are ties, especially amongst the
best individuals, since those selections will then be shared
across the tied individuals.

On the other hand, we have observed numerous examples
of lexicase selection rewarding an interesting individual with
over 90% of the selections in a generation—over 100 times

1Much of the following text is adapted from the lead au-
thor’s Ph.D. dissertation [5], but not previously published
elsewhere.
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Figure 2: Probability mass function of selecting in-
dividual with rank i out of a population of 1000 indi-
viduals using tournament selection with tournament
size 7, assuming no two individuals have the same
rank. This plots Equation 1 with P = 1000 and t = 7.

as often as the best individual is expected to be selected
under tournament selection. In general, if an individual’s
error vector Pareto dominates a substantial percentage of
the other error vectors in the population, then we would
expect lexicase selection to select that individual quite often.
In an extreme case, if a population has an individual that
Pareto dominates every other member of the population,
then that individual would receive all of the selections in
that generation. We therefore expect lexicase selection to
produce non-zero numbers of hyperselections at the 5% and
10% levels, though without empirical data it is unclear how
common these are or what impact they have on evolution.

4. MEASURING HYPERSELECTION
To empirically measure hyperselection, we gathered data

from genetic programming runs using lexicase selection and
tournament selection with size 7 tournaments. We tested
each selection method on nine problems, exhibiting a range
of problem requirements and difficulties, from a recent gen-
eral program synthesis benchmark suite [7]; see Table 1 for
details. These problems, taken from introductory computer
science homework sets, mimic the types of programming ex-
pected of humans writing software. On each problem, we
use a training data set during evolution and an unseen test
set to test generalization, following the methods described
in the benchmark suite [7]. A program must pass both the
training and test sets to be considered a solution.

For our experiments we used PushGP [18, 17], a stack-
based genetic programming system.2 PushGP supports a
variety of control structures and multiple data types, making
it a good choice for program synthesis tasks. The PushGP
parameters used in these experiments are the same as those
reported in [5]; Table 2 presents the most relevant parame-
ters. Note that these runs use linear genomes that are trans-
lated into Push programs before execution, as described in

2Lexicase selection has also been shown to be effective in
tree-based genetic programming [8, 12].



Table 1: Problems used in our experiments. The instruction set used for each problem includes all instructions
available in PushGP that make use of the data types listed in the third column. Any problem with “print”
listed as a data type requires the program to print the result to standard output. All problems also used
instructions making use of Push’s exec stack, which allow for a variety of control flow structures such as
conditional execution, recursion, and iteration. See the benchmark suite specifications for more details [7].

Problem Description Data Types

Count Odds Given a vector of integers, return the number of integers that are odd,
without use of specific even or odd instructions.

integer, boolean, vector of
integers

Double Letters Given a string, print the string, doubling every letter character, and
tripling every exclamation point. All other non-alphabetic and
non-exclamation characters should be printed a single time each.

integer, boolean, char, string,
print

Mirror Image Given two vectors of integers, return true if one vector is the reverse
of the other, and false otherwise.

integer, boolean, vector of
integers

Negative To
Zero

Given a vector of integers, return the vector where all negative integers
have been replaced by 0.

integer, boolean, vector of
integers

Replace Space
with Newline

Given a string input, print the string, replacing spaces with newlines.
Also, return the integer count of the non-whitespace characters.

integer, boolean, char, string,
print

String Lengths
Backwards

Given a vector of strings, print the length of each string in the vector
starting with the last and ending with the first, each on a separate line.

integer, boolean, char, string,
vector of strings, print

Syllables Given a string containing symbols, spaces, digits, and lowercase letters,
count the number of occurrences of vowels (a, e, i, o, u, y) in the string
and print that number as X in The number of syllables is X.

integer, boolean, char, string,
print

Vector Average Given a vector of floats, return the average of those floats. Results are
rounded to 4 decimal places.

integer, float, vector of floats

X-Word Lines Given an integer X and a string that can contain spaces and newlines,
print the string with exactly X words per line. The last line may have
fewer than X words.

integer, boolean, char, string,
print

Table 2: PushGP parameters

Parameter Value

runs per problem/parameter combination 100
population size 1000
maximum generations 300

Genetic Operator Prob

alternation 0.2
uniform mutation 0.2
uniform close mutation 0.1
alternation followed by uniform mutation 0.5

[5]. We use a variety of genetic operators on these linear
genomes, including alternation, a linear crossover operator
modeled after ULTRA [16]; uniform mutation, which re-
places each instruction with some probability; uniform close
mutation, which probabilistically adds or removes parenthe-
ses; and alternation followed by uniform mutation.

To track hyperselection, we calculated the average num-
ber of hyperselected individuals at the 1%, 5%, and 10%
levels per generation, which we present in Table 3 (ignore
SLT for now). On all problems except one, lexicase selection
hyperselects 5 or more individuals per generation on aver-
age at the 1% level; tournament selection averages less than
one per generation on all problems, though always greater
than 0.2. Unsurprisingly, tournament selection never hyper-
selected a single individual at the 5% or 10% levels. On 7 of
the 9 problems, lexicase selection hyperselected one individ-
ual at the 5% level at least once every every 10 generations
on average, with some higher. On those same problems, lex-

icase selection hyperselected one individual at the 10% level
at least once every 25 generations on average.

The Vector Average and Count Odds problems showed
much lower levels of hyperselection with lexicase selection,
especially at the 5% and 10% levels, indicating that select-
ing a single individual to parent many of the children in a
single generation was rarer on those problems. These two
problems were also among the least-solved problems in this
subset of the benchmark problems (see Table 5); one hypoth-
esis is that most of the genetic programming runs had trou-
ble getting any traction on these problems, leading to more
homogeneous populations and fewer hyperselection events
than on other problems.

Considering that tournament selection conforms to the
probability of selection given in Equation 1 regardless of
problem, it is at first surprising that its hyperselections at
the 1% level vary as much as they do across problems. This
difference is likely explained by how often tied individuals
appear near the top of the rankings for different problems,
since Equation 1 does not strictly hold in the presence of
ties. Intuitively, if many individuals tie for the best rank,
they will each win fewer tournaments than a single best indi-
vidual would, since ties in tournaments are broken randomly.
Therefore, lower hyperselection for tournament selection on
a problem likely indicates that ties happened more often on
those problems, which we have observed anecdotally.

The results in Table 3 clearly show that lexicase selection
gives more of its parent selections to single individuals than
tournament selection, both at low levels (1%) and higher lev-
els (5% and 10%) of hyperselection. Thus lexicase selection
more often concentrates its selection pressure on single indi-
viduals or small groups of individuals than tournament selec-
tion, increasing its exploitation of the individuals it selects
most often. This data does not, however, indicate whether



Table 3: Average number of hyperselected individuals per generation at the 1%, 5%, and 10% levels for
lexicase selection, tournament selection and SLT selection.

Lexicase Tournament SLT
Problem 1% 5% 10% 1% 5% 10% 1% 5% 10%

Count Odds 0.49 0.02 0.00 0.70 0.00 0.00 1.54 0.00 0.00
Double Letters 12.28 0.29 0.09 0.36 0.00 0.00 1.54 0.00 0.00
Mirror Image 9.72 0.23 0.05 0.22 0.00 0.00 1.55 0.00 0.00
Negative To Zero 8.21 0.39 0.16 0.43 0.00 0.00 1.55 0.00 0.00
Replace Space with Newline 13.39 0.38 0.11 0.28 0.00 0.00 1.56 0.00 0.00
String Lengths Backwards 6.21 0.54 0.25 0.42 0.00 0.00 1.53 0.00 0.00
Syllables 5.74 0.13 0.05 0.38 0.00 0.00 1.55 0.00 0.00
Vector Average 6.99 0.02 0.01 0.91 0.00 0.00 1.56 0.00 0.00
X-Word Lines 5.31 0.13 0.04 0.36 0.00 0.00 1.55 0.00 0.00

Table 4: Average number of hyperselected individuals per generation at the 1%, 5%, and 10% levels for
lexicase selection on five of the nine benchmark problems, broken out into successful and unsuccessful runs.

Successful Unsuccessful
Problem 1% 5% 10% 1% 5% 10%

Count Odds 0.84 0.07 0.02 0.47 0.01 0.00
Double Letters 11.88 0.72 0.28 12.29 0.28 0.08
Mirror Image 9.32 0.27 0.06 10.49 0.15 0.04
Vector Average 8.35 0.05 0.02 6.78 0.02 0.00
X-Word Lines 5.43 0.47 0.22 5.29 0.09 0.02

lexicase selection is hyperselecting the same individuals that
tournament selection ranks highest (those with best total er-
ror), or if it actually selects individuals that would receive
few or no selections with tournament selection.

Previous work and the results in Table 5 show that ge-
netic programming with lexicase selection significantly out-
performs genetic programming with tournament selection
across many benchmark problems, including most of those
in Table 3. The fact that lexicase selection often concen-
trates selection pressure onto small numbers of individuals
through hyperselection raises the question of whether there
is a relationship between the rates of hyperselection in the
lexicase runs and whether those runs are successful or not.

Table 4 shows the average number of hyperselected in-
dividuals for the lexicase runs of five of the nine bench-
mark problems, separated into the successful and unsuccess-
ful runs.3 While there are not major differences in the num-
bers at the 1% level, the average number of hyperselected
individuals at the 5% and 10% levels are often several times
higher in the successful runs than in the unsuccessful runs.
In the X-Word Lines problem, for example, the average num-
ber of hyperselections at the 5% level for the successful runs
was 0.47, over five times the rate for the unsuccessful runs
(0.09), and the 10% rate (0.22) was over 10 times the rate
for the unsuccessful runs (0.02).

Can we attribute lexicase selection’s success to its abil-
ity to concentrate selection in hyperselection events? Or, is
it more important that lexicase selects different individuals
than tournament selection, in some sense the “right” indi-

3We do not have success/failure split data for the other 4
problems, since they were conducted before we considered
splitting the data. Since this result is not a major contribu-
tion of this work, we did not rerun this experiment.

viduals to drive evolution toward a solution? We investigate
these questions in the following section.

5. HYPERSELECTION AND LEXICASE
PERFORMANCE

We have shown that lexicase selection often ends up se-
lecting the same individual many times in one generation,
and does so much more often than is mathematically pos-
sible with tournament selection. This raises the question
of whether the hyperselections observed in lexicase selection
runs are important in driving evolution toward solutions.
The alternative is that the individuals that lexicase selects
the most often are simply different from those selected most
often by tournament selection, in particular specialists with
high total error but low error on a subset of cases. In this
section we test the hypothesis that the hyperselection events
we observed in runs using lexicase selection are integral to its
success, and that without these extreme exploitative events,
lexicase selection would perform significantly worse than it
does with them.

To test this hypothesis, we designed a new parent selection
algorithm that focuses its selections on the same individu-
als that lexicase does, but has hyperselection characteristics
much closer to those of tournament selection. The new algo-
rithm, sampled lexicase-tournament selection (SLT), starts
by sampling the population, which only happens once per
generation before selecting any parents. We sample k indi-
viduals from the population by running the lexicase selection
algorithm and tracking how often each individual is selected.
In this work we set k = 2P , where P is the population size
(1000 in our runs), guaranteeing at least as many samples
as the number of parent selections in that generation.4 We

4We expect about 1700 parent selections per generation.



then use the number of samples each individual received to
rank the population from best (most samples) to worst (least
samples). Next, every time we need to select a parent, we
conduct a tournament, where the winner of the tournament
is based on the lexicase-sampled ranking instead of total er-
ror. In this experiment we used size 7 tournaments, just like
we did with tournament selection in our experiments.

SLT can be seen as a variation of tournament selection
in which fitness is based on lexicase sampling instead of to-
tal error. SLT gives the highest probabilities of selection to
those individuals that lexicase would select the most often in
the population. Since it uses tournaments for selection, how-
ever, its probability of selecting the individual ranked i in
the lexicase-sampled ranking will be same as in tournament
selection, as given in Equation 1. We would therefore expect
the hyperselection characteristics of SLT to mirror those of
tournament selection, and differ only when the two behave
differently with respect to tied individuals in the rankings,
especially ties amongst the best individuals. To be clear, we
developed SLT not because we believe it could be a useful
parent selection method, but instead because it will allow
us to test the hypothesis that hyperselection events are crit-
ical to lexicase selection’s improved performance compared
to tournament selection.

We conducted 100 runs of PushGP using SLT on the same
9 benchmark problems; the hyperselection results for SLT
are also included in Table 3. The first thing to note is that
SLT has higher hyperselection at the 1% level than tour-
nament selection. Theoretically, we would expect SLT to
behave similarly to tournament selection if neither had ties
in rank within the population. We believe the differences we
see here are a product of ties in total error when using tour-
nament selection, especially near the top of the rankings.
The relative consistency of SLT’s 1%-level hyperselection
likely comes from the fact that it rarely had large numbers
of tied individuals near the top of the rankings.

In these runs, SLT usually had substantially lower hyper-
selection at the 1% level than lexicase selection, and always
lower at the 5% and 10% levels, on which it never had a
non-zero result. Since SLT was designed to have hyperse-
lection characteristics similar to tournament selection, it is
unsurprising that it received no hyperselections at the upper
levels. This means that SLT succeeds in our goal of creat-
ing a lexicase-based selection mechanism that never puts
as much as 5% of the parent selections in a generation on
a single individual. This contrasts with lexicase selection,
which often selects single individuals to make large numbers
of children for the next generation.

Since we have shown that SLT has similar hyperselection
characteristics to tournament selection, let us now examine
its performance results in these runs, which we present in
Table 5. Across these 9 problems, SLT shows very similar
performance to lexicase selection, and better performance
than tournament selection on every problem. Both SLT and
lexicase found at least one solution on each of the 9 problems,
where tournament selection only found solutions to 6 of the
problems. Comparing these methods using a chi-square test
with the Holm correction, SLT never has a significantly dif-
ferent success rate compared to lexicase selection. SLT is
significantly better than tournament selection on 5 of the
7 problems on which lexicase is, and is additionally signifi-
cantly better on one other problem. Though the difference
is never significant, SLT seems to slightly outperform lexi-

Table 5: Number of successful runs out of 100 for
each parent selection method on each problem. For
each problem, underline indicates significant im-
provement over tournament selection using a pair-
wise chi-squared test with Holm correction and 0.05
significance level. SLT and lexicase selection never
have significantly different success rates.

Problem Lex Tourn SLT

Count Odds 8 0 5
Double Letters 6 0 4
Mirror Image 78 46 84
Negative To Zero 45 10 53
Replace Space with Newline 51 8 61
String Lengths Backwards 66 7 79
Syllables 18 1 13
Vector Average 16 14 30
X-Word Lines 8 0 4

case selection on the easier problems where both find more
solutions, and lexicase selection slightly outperforms SLT on
the more difficult problems where both find fewer solutions.

Previous work has shown lexicase selection’s ability to
maintain higher levels of population diversity than other
methods [6], so we were interested to see if SLT also shares
this characteristic, or if hyperselection when using lexicase
raises (or even lowers) diversity. Figures 3, 4, and 5 show
the error diversity—the number of unique error vectors in
the population—over time for three representative problems.
Each of these figures plots the median and quartiles for error
diversity across 100 runs. Interestingly, the diversity plots
for SLT are very similar to those of lexicase selection. Thus,
even though the techniques produce significantly different
hyperselection rates, their populations still maintain similar
abilities to search widely.

It is perhaps somewhat surprising that SLT and lexicase
selections lead to such similar error diversities, as we might
expect lexicase selection’s hyperselection events to cause ma-
jor drops in population diversity. Figure 6 shows the error
diversity over time for three specific runs of the Replace
Space With Newline problem using lexicase selection, each
of which has at least one substantial drop in diversity as-
sociated with a hyperselection event. In each of these spe-
cific cases lexicase selection is able to increase error diversity
within a matter of generations, bringing it to approximately
the median diversity levels seen in Figure 4. The consistently
high levels of error diversity when using lexicase (e.g., Fig-
ures 3–5) suggest that if hyperselection events lead to drops
in diversity, lexicase selection is generally able to promptly
restore diversity. This sort of diversity recovery is likely im-
portant to lexicase selection’s success; otherwise, diversity
cliffs caused by hyperselection events could lead to popula-
tions with little diversity, incapable of widely exploring the
search space.

These results show that even though SLT has far fewer hy-
perselection events than lexicase selection, never selecting a
single individual to parent more than 5% of the children in a
generation, it nevertheless exhibits the problem-solving per-
formance and diversity levels shown by lexicase selection.
These results give strong evidence against the hypothesis
that lexicase selection’s increased exploitation of hyperse-



0.00

0.25

0.50

0.75

1.00

0 100 200 300
Generation

E
rr

or
 D

iv
er

si
ty

Lexicase

SLT

Tournament

Figure 3: Error diversity for the Double Letters
problem.
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Figure 4: Error diversity for the Replace Space With
Newline problem.

lected individuals is necessary for its ability to outperform
tournament selection with and without implicit fitness shar-
ing. Instead, this suggests that it is more important which
individuals lexicase selection selects most often, which it has
in common with SLT but not tournament selection.

While SLT achieved similar performance to lexicase selec-
tion in this experiment, we do not see indications that it
would make a better parent selection mechanism. Notably,
it will be slower than lexicase selection in practice, since it
performs both lexicase sampling and then tournaments for
selection. Even so, it may merit further examination on
other types of problems to see if it behaves differently in
other settings.

6. CONCLUSIONS
Because lexicase selection can significantly improve the

ability of genetic programming to solve hard problems, it
would be useful to better understand the reasons that it
sometimes works so well. Previous observations of the un-
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Figure 5: Error diversity for the Syllables problem.
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Figure 6: Error diversity for three runs of Replace
Space With Newline using lexicase selection, show-
ing the rapid return of diversity after hyperselection
events that rapidly decrease diversity.

usual phenomenon of hyperselection under lexicase selection,
in which a single individual is selected as a parent in a very
large number of selection events, suggested that there might
be an interesting connection between hyperselection and the
problem-solving power of lexicase selection.

The experiments presented here show that the problem-
solving power of lexicase selection is maintained even if it
is altered to prevent hyperselection, using selection frequen-
cies like those of tournament selection, as exhibited by the
new sampled lexicase-tournament selection algorithm. This
result gives strong evidence that the power of lexicase se-
lection must stem from the collection of individuals that
it tends to select, not from the unusual frequencies with
which it sometimes selects them. Previous work had al-
ready shown that lexicase selection often selects specialist
individuals that do well on some cases but poorly on oth-
ers [6, 5], and our results here suggest that it may be the
exploitation of these specialists that is primarily responsible
for the unusual problem-solving power of lexicase selection.



One avenue for future research is to investigate the notion
of a “specialist” more thoroughly, to determine if, perhaps,
some kinds of specialists may be more valuable than others.

Our anecdotal exploration of quick diversity increases fol-
lowing major drops in diversity when using lexicase selection
suggests another area for future work. A more thorough ex-
ploration of diversity recovery could lend understanding to
the causes of lexicase selection’s ability to maintain high
levels of population diversity.

While this work focuses on the effects of hyperselection on
lexicase selection, hyperselection may have a role in other se-
lection methods not explored here. While other tournament-
based methods (such as implicit fitness sharing [13]) should
roughly mirror the hyperselection characteristics of tourna-
ment selection, other methods such as fitness-proportionate
selection or Pareto-based techniques may have different hy-
perselection characteristics that could be worth exploring.
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