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Abstract Lexicase selection is a selection method for evolutionary computation in
which individuals are selected by filtering the population according to performance
on test cases, considered in random order. When used as the parent selection method
in genetic programming, lexicase selection has been shown to provide significant
improvements in problem-solving power. In this chapter we investigate the reasons
for the success of lexicase selection, focusing on measures of population diversity.
We present data from eight program synthesis problems and compare lexicase selec-
tion to tournament selection and selection based on implicit fitness sharing. We con-
clude that lexicase selection does indeed produce more diverse populations, which
helps to explain the utility of lexicase selection for program synthesis.

Key words: Lexicase selection, diversity, tournament selection, implicit fitness
sharing.

1 Introduction

Lexicase selection is a recently developed parent selection method for evolution-
ary computation in which individuals are selected by filtering the population ac-
cording to performance on individual fitness cases, considered in random order
(Spector, 2012). Lexicase selection, when used as the parent selection method in
genetic programming, has been shown to provide significant improvements in terms
of problem-solving power (Helmuth et al, 2014; Helmuth and Spector, 2015). In this
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chapter we investigate the reasons for the success of lexicase selection, focusing in
particular on the ways in which lexicase selection seems to help maintain popula-
tion diversity. We present data from eight program synthesis problems and compare
lexicase selection, in terms of problem solving power and diversity, to tournament
selection and selection based on implicit fitness sharing (IFS). IFS distributes reward
among the individuals that solve a test case, giving more reward for cases solved by
fewer individuals (McKay, 2000); for more detail see (Helmuth et al, 2014).

For each parent selection event lexicase selection randomly orders the test cases
and then removes any individuals that do not have the best performance on the first
case. If more than one individual remains then those that do not have the best perfor-
mance on the second case are also removed. This continues until only one individual
remains and is selected, or until all cases have been used, in which case one of the
remaining individuals is selected randomly. Key properties of lexicase selection are
that (a) it avoids combining all errors into a single scalar fitness value, (b) because
of the random ordering of test cases, every test case will be most important (first to
be considered) at least occasionally, and (c) similarly, each pair of test cases, and
each triple, etc., will be most important at least occasionally.

We investigate the relations between selection methods and population diversity
using two measures of diversity: error diversity and cluster counts. We find that lex-
icase selection runs have consistently higher error diversity than tournament selec-
tion and IFS across all generations and all problems. The cluster counts for lexicase
selection are also generally higher, but less consistently. We conclude that lexicase
selection does indeed produce more diverse populations, which helps to explain the
utility of lexicase selection for program synthesis.

2 Diversity Measures

To evaluate a program in program synthesis, we run it on a set of test cases composed
of input/output pairs, creating a behavior vector of its outputs. Then, we apply one
or more error functions to each desired output and the program’s output, creating an
error vector for each individual. We define error diversity to be the percentage of
distinct error vectors in the population. Error diversity is similar to behavioral diver-
sity, which is the percentage of distinct behavior vectors in the population (Jackson,
2010). The error diversity of a population will be less than or equal to its behavioral
diversity, since two different behavior vectors may produce the same error vector,
but two different error vectors must come from different behavior vectors. Helmuth
et al (2014) showed that lexicase selection maintained higher diversity than tourna-
ment and IFS selection on three problems.

One hypothesis we have put forth regarding the improved performance of lexi-
case selection is that it enables groups of specialists for solving different parts of the
problem to evolve side-by-side, implicitly maintaining the kind of niches that are
maintained more explicitly by island models and related methods. We expect that
evolution may sometimes progress when individuals from different groups mate,
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producing a child that combines the abilities of its parents. The hope is that this pro-
cess, iterated, will eventually produce an individual that solves the entire problem.
Here we explore the effects of different parent selection methods on the development
of clusters of individuals that perform similarly across the test cases. We expect that
using lexicase selection will result in relatively larger numbers of clusters, since it
selects individuals on the basis of specific cases and groups of cases, rather than on
overall performance.

To examine this idea, we must be able to measure the clustering of a population
with respect to the training cases. We base the clustering of the population on the
individuals’ error vectors across the training cases. Since we are primarily inter-
ested in whether an individual performs at least as well as every other individual
in the population, we convert the error vectors into binary “elitized” error vectors
that indicate whether an individual achieved the best error on each test case in that
generation. More formally, if each individual j in the population P has error vector
error j containing error values on the test cases T , then the elitized error vector for
individual i is defined by

elitizedi[t] =

0, if errori[t] = min
j∈P

(error j[t])

1, otherwise

for t ∈ T . By elitizing the error vectors, we can ignore the differences between
individuals that perform poorly on cases in different ways, and concentrate on how
individuals cluster based on the cases on which they perform well.

In this work we use agglomerative clustering1 to count how many clusters there
are in the population at each generation. Agglomerative clustering creates a hierar-
chical clustering model by first placing each individual into its own cluster. It then
iteratively combines the two closest clusters into a single cluster, until all clusters
have been combined into a single cluster, recording at each step the distance be-
tween the clusters in each merged pair. We can then break the single cluster into
smaller clusters by “cutting” the merge between any two clusters whose distance
exceeds some threshold. Since we are using binary error vectors, we use the Man-
hattan distance as our distance metric, which makes the distance between two error
vectors a count of the number of test cases on which those two individuals have dif-
ferent “eliteness” results. We chose to count the number of clusters that differed on
at least 10% of the training cases; for example, if a problem has 200 training cases,
we count the number of clusters that differ in binary eliteness on at least 20 training
cases. While this distance is somewhat arbitrary, it gives a reasonable and consistent
estimate of how many groups of individuals are doing significantly different things
in a given generation.

1 We used the agnes (Maechler et al, 2014) implementation of agglomerative clustering in R (R
Core Team, 2014), using the average linkage when combining clusters.
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3 Experiment and Results

We collected data from 100 runs each on 8 different problems described by Hel-
muth and Spector (2015). All of these are basic programming problems taken from
introductory programming texts; several are readily solved, while others remain un-
solved using this study’s tools. Table 1 lists the problems, a brief description, and
the length of the error vectors2; other details of the runs can be found in (Helmuth
and Spector, 2015). In Table 2 we’ve also provided the number of successes, i.e.,
runs in which a program was evolved with total error of 0 across all the training
cases. Success rates aren’t the focus of this chapter, but these numbers give a sense
of the relative difficulty of the problems and illustrate the substantial improvements
that lexicase selection provides over both tournament selection and IFS.

Table 1 Short descriptions of the 8 test problems used here, along with the number of errors in
each error vector. See (Helmuth and Spector, 2015) for more details on each problem.

Problem name Description # errors
Replace Space With Newline Print the input string, replacing spaces with newlines. Also,

return the number of non-whitespace characters.
200

Syllables Count the number of occurrences of vowels (a, e, i, o, u,
y) in the given string and print that number as X in The
number of syllables is X.

200

String Lengths Backwards Given a vector of strings, print the length of each string in
reverse order (starting with last and ending with first).

100

Negative To Zero Given a vector of integers, return the vector where all neg-
ative integers have been replaced by 0.

200

Double Letters Given a string, print the string, doubling every letter
character, and tripling every exclamation point. All other
non-alphabetic and non-exclamation characters should be
printed a single time each.

100

Scrabble Score Given a string of visible ASCII characters, return the
Scrabble score for that string.

200

Checksum Given a string, compute the integer ASCII values of the
characters in the string, sum them, take the sum modulo
64, add the integer value of the space character, and then
convert that integer back into its corresponding character
(the checksum character). Then print Check sum is X,
where X is replaced by the correct checksum character.

200

Count Odds Return the number of odd numbers in a vector of integers. 200

We used the Clojush implementation3 of the PushGP system (Spector and Robin-
son, 2002; Spector et al, 2005) for all runs. Each run used a population size of 1,000
individuals, and runs continued for either 300 generations or a until solution was
found, whichever came first.

2 For some of these problems, each test case generates multiple error values because we apply
more than one error function.
3 https://github.com/lspector/Clojush
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Table 2 Number of successes (out of 100 runs) for each of the 8 test problems used here. These
numbers are similar but not identical to those reported in (Helmuth and Spector, 2015) because
new runs were performed for this chapter.

Problem name Lexicase Tournament IFS
Replace Space With Newline 57 13 17
Syllables 24 1 2
String Lengths Backwards 75 18 12
Negative To Zero 72 15 9
Double Letters 5 0 0
Scrabble Score 0 0 0
Checksum 0 0 0
Count Odds 4 0 0

Figures 1–16 show error diversity and cluster counts over time for each of the test
problems. Below each plot is a smaller sub-plot showing the number of successes
over time for each selection; since runs end when a solution is found, the successes
plot gives a sense of how many runs are still being represented in the primary plot
at a given generation. In Figure 1, for example, the number of lexicase successes
is nearly 25 by generation 50, and nearly 50 by generation 150. Thus there are
slightly more than 75 data points still represented in the lexicase data at generation
50, but only about 50 data points represented from generations 150 to 300. Each plot
includes a line indicating the median error diversity or median cluster count across
whichever of the 100 runs was still running at that generation. We also indicate the
range from the 25th percentile to the 75th percentile with a gray band around the
median line; unfortunately the tournament and IFS results are often very similar and
strongly overlap, making them difficult to differentiate.

In general the error diversity numbers for lexicase selection are substantially and
significantly higher than those for either tournament selection or IFS, which tend to
be extremely similar. The String Lengths Backwards problem was the only problem
for which there was any substantial overlap between the range of values for lexicase
and the other two selection mechanisms (see Figure 5). Typically the lexicase error
diversity rises very sharply in the early generations leveling off somewhere between
0.75 and 1.0, meaning that 3

4 or more of the individuals in the lexicase runs have
unique error vectors. This is in contrast to the tournament selection and IFS results,
in which the median error diversity values rarely rise above 0.5; the two exceptions
are on the Scrabble Score and Count Odds problems (Figures 11 and 15), which
neither ever solved, where the error diversity values approach or exceed 0.75.

The cluster count results are more mixed. Lexicase selection has clearly higher
cluster counts for half of the problems (Replace Space With Newline, Syllables,
Scrabble Score, and Count Odds; Figures 2, 4, 12 and 16). It also starts with much
higher counts on the Double Letters problem (Figure 10), but those numbers drop
again quickly, matching the other two approaches by around generation 100. On
the Negative To Zero problem (Figure 8), the lexicase cluster counts remain small
(about the same as for both tournament and IFS) throughout the runs. Particularly
striking are lexicase cluster counts for String Lengths Backwards (Figure 6) and
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Checksum (Figure 14), where the number of clusters with lexicase selection is ac-
tually lower earlier in the run.

4 Discussion

As in (Helmuth and Spector, 2015), lexicase selection produced more successes than
either tournament selection or IFS on any problem in which a solution was found.
The error diversity for the lexicase runs was much higher than for tournament and
IFS for most problems, which is consistent with the hypothesis that lexicase selec-
tion helps maintain diversity. The lexicase error diversity values tended to plateau
at or above 0.75, meaning that in a population of 1,000 individuals there were over
750 distinct error vectors. This doesn’t mean that different individuals were solv-
ing different test cases; it could just be that many had different incorrect answers
and error values. From a search perspective, though, this still seems useful, as those
different error values may represent different starting points for subsequent search.

For four of the eight problems, the cluster counts were also much higher for
lexicase than for the other two selection mechanisms. For some of these problems
(e.g., Count Odds) there are over 100 clusters, and for Syllables the median cluster
count is over 400 from generation 100 forward. This suggests that lexicase selection
is maintaining large numbers of sub-groups of the population that are capable of
solving different parts of the problem. For problems with no solutions found, this
might indicate that the genetic operators are not able to act on the structure of the
programs in those sub-populations in ways that allow progress.

Interpretation of the cluster count results on the other four problems is more dif-
ficult. Analysis of the lexicase Checksum runs suggests that the lack of clustering
might be a function of structural issues with the test cases; there are 100 test cases,
with two error functions per test case: the Levenshtein edit distance on the printed
string, and the integer difference between the ASCII values of the last character of
the printed string and the correct checksum character. It appears that populations
quickly evolve the ability to print Check sum is, but then stall, with each pro-
gram printing different final characters. This allows for fairly high error diversity
(over 0.75), but any given program tends to get at most two or three test cases right
by guessing. This means that the Manhattan distance between any two elitized er-
ror vectors is typically only 5 or 6 at most, shy of the 10% threshold of 20 for this
problem, resulting in only one or two clusters. Additional test cases exploring dif-
ferent inputs might allow evolution to first stumble upon and then exploit code that
produces actual checksums.

On problems for which solutions were discovered, lexicase selection runs found
solutions throughout the 300 generations. This, combined with the high levels of
error diversity and the often high number of clusters, gives one hope that mean-
ingful search can still occur late in a lexicase selection run. The plots of successes
over time under the primary plots typically appear to have positive slope even at
generation 300, so it would be interesting to extend these runs to 500 or 1,000 gen-
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Fig. 3 Syllables – error diversity
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Fig. 5 String Lengths Backwards – error diversity
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Fig. 7 Negative To Zero – error diversity
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Fig. 9 Double Letters – error diversity
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Fig. 11 Scrabble Score – error diversity
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Fig. 13 Checksum – error diversity
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Fig. 14 Checksum – cluster counts
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Fig. 15 Count Odds – error diversity
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erations and see how many additional solutions are discovered. If lexicase selection
is indeed maintaining meaningful diversity then we would expect to see continued
discovery of solutions, at a higher rate than for either tournament selection or IFS.
This might be particularly interesting for problems for which solution discovery is
rare but possible, such as Double Letters and Count Odds, which are solved using
lexicase selection 5 and 3 times respectively, but not at all using tournament selec-
tion or IFS. Solutions for these two problems tended to be discovered later in the
run (Double Letters in generations 109, 122, 192, 275, and 291; Count Odds in 65,
233, 279), so letting runs on those problems go longer might be revealing.

On the set of problems explored here, error diversity seems to be a better predic-
tor of performance than cluster counts. In fact, on two of the problems for which
solutions were found in over half the runs (String Lengths Backwards and Negative
To Zero), lexicase selection maintained very small numbers of clusters, similar to
tournament and IFS. On the other hand, lexicase selection consistently maintained
higher error diversity than other methods, and found more solutions on every prob-
lem that was solved. This may indicate that the ability to form clusters on a problem
is more indicative of the problem itself than the parent selection method and its abil-
ity to solve the problem. This provides evidence against our hypothesis that lexicase
selection performs better because it maintains clusters of individuals that genetic
operators can combine to solve increasingly large numbers of test cases.

5 Conclusions

In this chapter we used two different measures of diversity (error diversity and clus-
ter counts) to try to better understand the impact of lexicase selection, and why
it seems to consistently outperform tournament selection and implicit fitness shar-
ing (IFS) on a range of software synthesis problems (Helmuth and Spector, 2015).
The error diversity was generally much higher for lexicase selection than for either
tournament selection or IFS, with lexicase selection maintaining a broad range of
distinct behaviors. Cluster counts were typically higher with lexicase selection, and
the instances in which they weren’t may say more about the problem or test case
structure than about the selection mechanism. This suggests that error diversity is
indeed a valuable metric for studying the impact of system design decisions. The
value of cluster counts is less clear, but it seems likely that understanding why the
cluster counts were so low on certain problems could be informative.

Given that the lexicase selection runs maintain error diversity all across the 300
generations, it seems plausible that extending the length of the runs would generate
additional solutions. It would be illuminating to extend these runs to 500 or 1,000
generations and see whether lexicase selection is able to make “better” use of those
additional computational resources.

While the focus of this chapter was to better understand the behavior of lexicase
selection, the results also show that tournament selection and IFS behave very sim-
ilarly with respect to the diversity measures used here. This is unfortunate because
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IFS was specifically designed to maintain diversity. Both tournament selection and
IFS aggregate test case errors into a single value, with IFS just weighting the compo-
nents differently; this may be partially responsible for the similar rates in diversity.

Acknowledgements Thanks to the members of the Hampshire College Computational Intelli-
gence Lab for discussions that helped to improve the work described in this chapter, to Josiah
Erikson for systems support, and to Hampshire College for support for the Hampshire College In-
stitute for Computational Intelligence. This material is based upon work supported by the National
Science Foundation under Grants No. 1017817, 1129139, and 1331283. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

References

Helmuth T, Spector L (2015) General program synthesis benchmark suite. In:
GECCO ’15: Proceedings of the 2015 Conference on Genetic and Evolutionary
Computation

Helmuth T, Spector L, Matheson J (2014) Solving uncompromising problems
with lexicase selection. IEEE Transactions on Evolutionary Computation DOI
doi:10.1109/TEVC.2014.2362729

Jackson D (2010) Promoting phenotypic diversity in genetic programming. In:
Schaefer R, Cotta C, Kolodziej J, Rudolph G (eds) PPSN 2010 11th International
Conference on Parallel Problem Solving From Nature, Springer, Krakow, Poland,
Lecture Notes in Computer Science, vol 6239, pp 472–481

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) cluster: Cluster
Analysis Basics and Extensions. R package version 1.15.3

McKay RI (2000) Fitness sharing in genetic programming. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 435442, Las Vegas,
Morgan Kaufmann, pp 10–12

R Core Team (2014) R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-
project.org/

Spector L (2012) Assessment of problem modality by differential performance of
lexicase selection in genetic programming: A preliminary report. In: 1st work-
shop on Understanding Problems (GECCO-UP), ACM, Philadelphia, Pennsylva-
nia, USA, pp 401–408, DOI doi:10.1145/2330784.2330846

Spector L, Robinson A (2002) Genetic programming and autoconstructive evolu-
tion with the push programming language. Genetic Programming and Evolvable
Machines 3(1):7–40, DOI doi:10.1023/A:1014538503543

Spector L, Klein J, Keijzer M (2005) The push3 execution stack and the evolution
of control. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and
evolutionary computation, ACM Press, Washington DC, USA, vol 2, pp 1689–
1696, DOI doi:10.1145/1068009.1068292




