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Abstract For both practical reasons and those of habit, most evolutionary compu-
tation research is presented in highly summary form. These summaries, however,
often obscure or completely mask the profusion of specific selections, crossovers,
and mutations that are ultimately responsible for the aggregate behaviors we’re in-
terested in. In this chapter we take a different approach and use the Neo4j graph
database system to record and analyze the entire genealogical history of a set of
genetic programming runs. We then explore a few of these runs in detail, discov-
ering important properties of lexicase selection; these may in turn help us better
understand the dynamics of lexicase selection, and the ways in which it differs from
tournament selection. More broadly, we illustrate the value of recording and analyz-
ing this level of detail, both as a means of understanding the dynamics of particular
runs, and as a way of generating questions and ideas for subsequent, broader study.

Key words: graph database, Neo4j, ancestry, genealogy, lexicase selection, tourna-
ment selection

1 Introduction

It is common practice in empirical evolutionary computation (EC) research to per-
form a substantial number of runs, and then report a handful of aggregate statis-
tics that summarize and (hopefully) represent the complex dynamics of those many
runs. Tables present values such as mean or median best fitnesses at the end of runs,
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collapsing the complexities of dozens or hundreds of runs into a single number,
possibly with a standard deviation or a confidence interval to give a sense of the dis-
tribution. Plots can often be more informative, showing how these numbers change
over time during the runs, possibly giving a sense of the system dynamics and the
range of behaviors. These plots, however, are typically still aggregate representa-
tions that obscure or completely hide important moments that, if explored, might
reveal valuable insight into the evolutionary dynamics being reported.

An alternative would be to collect, store, and analyze at least some of the rich
panoply of evolutionary and genealogical events that make up the low-level details
of these runs. Databases provide a natural tool for storing and accessing large data
sets, but traditional relational databases are poorly suited for many of the queries that
are important for genealogical analysis. In this chapter, we illustrate the use of graph
databases as an alternative storage and analysis tool for evolutionary computation
runs. We have previously demonstrated that graph databases can be an effective tool
for analyzing complex genetic programming (GP) dynamics (Donatucci et al, 2014),
which led directly to a proposed change to standard sub-tree crossover in tree-based
GP (McPhee et al, 2015). Here we will use the open source Neo4j graph database
tool1 to explore data from a collection of PushGP runs (Helmuth et al, 2015) on
several problems drawn from a benchmark collection of introductory programming
problems (Helmuth and Spector, 2015).

Note that this is not going to be a presentation of “traditional hypothesis-driven
research”. It will be based on an assumption, namely that something interesting
happens in these runs, and that we can learn useful things by exploring them in more
detail, but the presentation will be fairly discursive, reflecting our back-and-forth
experience of wrestling with the data. Our initial queries start from fairly obvious
questions (e.g., “Why did we succeed here?”), but from there we engage in a dialog
with data, letting the answers to early questions shape and guide our subsequent
exploration. We are not presenting a tidy, sterile summary of our adventures, but the
messier (but we think more informative in this context) journal of what Pickering
might call our “mangle of practice” (Smith et al, 2008; Pickering, 1993).

Here we explore the impact of lexicase (Spector, 2012) and tournament selection
on the dynamics of runs whose aim is to solve a basic software synthesis problem.
In the process we are able to discover surprising and likely important properties
of lexicase that suggest areas of additional exploration and indicate reasons for the
substantially better performance seen when using lexicase on a variety of software
synthesis problems (Helmuth and Spector, 2015).

We’re not the first people to recognize the potential value of exploring lineages
and ancestry graphs. The HeuristicLab team has been working for several years on a
set of tools to analyze at least small genealogical run histories (Burlacu et al, 2013,
2015); hopefully these exciting features will be in an upcoming release. (Burlacu
et al, 2013) also has an excellent survey of a variety of work that uses genealogical
information in EC work; none of this, however, appears to save and analyze full ge-
nealogical histories, but instead tends to use local ancestry information for purposes

1 http://neo4j.com/
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such as diversity promotion. Recent work (Kuber et al, 2014) applies network theory
to ancestry graphs, looking for things like cliques as a way of better understanding
EC dynamics; that work is similar in spirit to this chapter, but differs in the kinds of
graphs that are built and the tools used to analyze them.

Because we’re going to focus on the use of graph databases, there will on occa-
sion be avenues of exploration that we won’t pursue because they would properly in-
volve different tools. This exploration, for example, raises important questions about
the relationships between parent and child genomes. These could be addressed us-
ing, e.g., difference-merge tools from software engineering, or sequence alignment
tools from genomics; see, e.g., (Burlacu et al, 2013) for an excellent example of this
kind of analysis. We will, however, consider that beyond the scope of this chapter.
A key value of our graph database results will be in providing focus for our use of
those other tools, identifying key moments and individuals in the course of a run that
deserve additional attention. There are thousands of potential genome comparisons
to make in a single run, for example, but our graph databases analysis helps identify
some of the critical individuals, crossovers, and mutations in the run, allowing us to
concentrate on the steps that are likely to have mattered most.

We’ll provide expanded motivation for this work in Section 2, and background
on relevant tools and concepts in Section 3. In Section 4 we explore in some detail a
successful lexicase selection run, identifying several properties of lexicase selection
that distinguish it from other, more traditional selection methods. We then explore
a successful tournament selection run in Section 5, comparing those results to the
earlier lexicase results. In Section 6 we step back a little and look at the results of
expanding some of our queries across hundreds of runs, and then wrap up with some
conclusions in Section 7.

2 Motivation

Consider the job of a paleontologist, who regularly reconstructs not just individuals
but also species and entire phylogenetic trees on the basis of a handful of teeth and
bones, or even just impressions left in prehistoric mud. They rarely have DNA, so
any evolutionary relationship is inherently speculative, subject to constant debate
and revision. Even with detailed DNA sequences, the construction of phylogenetic
trees for existing species is non-trivial.

In evolutionary computation, however, we have access to everything, at least in
principle. We could gather every selection, every mutation, and every crossover as
they play out in our systems. Yet we typically throw almost all that data away, report-
ing just aggregate statistics and summary plots, completely failing to take advantage
of our privileged position, a position most paleontologists would presumably eye
with considerable envy. Not only does this seem an inherent waste, these aggrega-
tions typically obscure critical moments in the dynamics of runs which might speak
volumes if explored.
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While this sort of aggregate reporting is often valuable, allowing for important
comparative analysis, it typically fails to provide any sense of the why. Yes, Treat-
ment A led to better aggregate performance than Treatment B – but what happened
in the runs that led to that result? Any end result is ultimately the intricate com-
bination of thousands or millions of of selections, recombinations, and mutations,
and if Treatment A is in some sense “better” than Treatment B, it must ultimately
be because it affected all those genealogical and genetic events in some significant
way, biasing them in a way that improved performance.

Unfortunately, published research rarely includes information that might shed
light on these why events. We rarely see evolved programs, for example, or any kind
of post-run analysis of those programs, and there is almost never any data or dis-
cussion of the genealogical history that might help us understand how a successful
program actually came to be. Sometimes these events and details aren’t included
for reasons of space and time; evolved programs, for example, are often extremely
large and complex, and a meaningful presentation and discussion of such a program
could easily take up more space than authors have available. We suspect, however,
that another reason this sort of why analysis often isn’t reported is because it isn’t
done, in no small part because it’s hard. As EC researchers we’re in the “privileged”
position of being able to collect anything and everything that happens in a run, but
that’s a potentially huge amount of data, and leaves us with two substantial prob-
lems: How to store the data, and how to analyze the data after it’s stored. Decreasing
data storage costs have done much to mitigate the first problem, but one still needs
good tools to process and explore what could quickly run into terabytes of data.

Assuming one has access to the necessary storage, databases are the obvious
tool for the collection of the data. Most common database tools, however, don’t
lend themselves to the kinds of analysis that we need in evolutionary computation
work. Most relational and document-based databases, for example, require complex
and expensive recursive joins to trace significant hereditary lines. In exploring the
dynamics of an EC run, it may be necessary to make connections across dozens or
even hundreds of generations, which simply isn’t plausible with a relational database
(Robinson et al, 2013). While we use Neo4j as our graph database in this work,
there are numerous other graph databases that could potentially be effective tools
(Wikipedia, 2015a). We make no claims to have exhaustively explored the range of
possible database tools for this sort of work.

3 A little background on tools and problems

This section provides some background on some of the key subjects of this work:
The Neo4j graph database and its query language Cypher; the PushGP system; lex-
icase selection; and the replace-space-with-newline test problem.
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3.1 Neo4j and Cypher

Graph databases (Robinson et al, 2013) are a relatively new database tool, where
data is stored as a collection of nodes and relationships in a graph, with a specialized
query language that makes it easy to ask questions about complex relationships. In
our work, nodes typically represent individuals, and :PARENT OF relationships
capture the central genealogical connections. We store important data such as the
total error as properties of individual nodes, and genetic operators as properties on
:PARENT OF edges.

The Neo4j query language, Cypher, allows this patterns in this data to be readily
extracted. A detailed description of Cypher is beyond the scope of this chapter, but
Cypher’s central feature is the ability to describe sub-graph patterns. The Neo4j
engine can then search for subgraphs matching these patterns. Cypher also provides
the ability to filter results based on properties in a manner quite similar to more
traditional SQL queries.

3.2 PushGP

PushGP (Spector and Robinson, 2002; Spector et al, 2005) is a stack-based genetic
programming system. The details of PushGP aren’t crucial for this analysis, but it is
useful to know a few things:

• PushGP uses a linear genome, which is then converted into a program.
• PushGP supports a variety of typed stacks, with corresponding typed instructions.

The integer-add instruction takes the top two items from the integer
stack, adds them, and pushes the result back onto the integer stack.

• There is an exec stack which can hold blocks of instructions. This is what allows
PushGP programs to loop or recurse, as pushing a block of instructions onto the
exec causes those instructions to be executed next.

While traditionally PushGP has evolved Push programs themselves, the most
recent version of PushGP instead evolves linear Plush genomes consisting of in-
structions paired with close counts. The Plush genomes are manipulated by genetic
operators, but are translated into Push programs prior to execution. During trans-
lation, any instruction that uses code from the exec stack implicitly opens a code
block; the close counts are natural numbers indicating how many open code blocks
should be closed after a given instruction.

In the runs explored here, there are three genetic operations: Alternation, uniform-
mutation, and uniform-close-mutation. Alternation is based on the earlier ULTRA
operator (Spector and Helmuth, 2013), and is similar to an N-point crossover in ge-
netic algorithms. The two parent genomes are traversed from left to right, copying
instructions from the source parent to the child. There’s a small probability at each
instruction of an alternation event, which switches which parent is being used as
the instruction source. For every alternation event there’s a small chance of slightly
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Algorithm 1 Pseudocode for lexicase selection, in the context of error minimization.
Here the function perf(i, p) computes the performance of program p on test case i.
candidates := the entire population
cases := list of all the test cases in a random order
while |candidates|> 1 and |cases|> 0 do
current, cases := first(cases), rest(cases)
best performance := min{perf(i,current) | i ∈ candidates}
candidates := {i | i ∈ candidates ∧ perf(i,current) = best performance}

end while
return random individual from candidates

shifting the instruction location in the source parent; how much deviation is pos-
sible is controlled by an alignment deviation parameter. Uniform-mutation simply
replaces each instruction with a randomly chosen instruction with some small prob-
ability. Uniform-close-mutation modifies each close count value with some small
probability. The runs discussed here allowed for pipelining of genetic operators, so
we might have combinations like alternation followed by uniform-mutation. For ad-
ditional details and the particular parameters used in these runs see (Helmuth and
Spector, 2015).

3.3 Lexicase selection

Lexicase selection is a recently developed selection method for evolutionary compu-
tation in which individuals are selected by filtering the population according to per-
formance on individual fitness cases, considered in random order (Spector, 2012).
Lexicase selection, when used as the parent selection method in genetic program-
ming, has been shown to provide significant improvements in terms of problem-
solving power (Helmuth et al, 2014; Helmuth and Spector, 2015).

For each parent selection event, lexicase selection (Algorithm 1) randomly orders
the test cases and then removes any individuals that do not have the best performance
on the first case. If more than one individual remains, then those that do not have
the best performance among those that remain on the second case are also removed.
This continues until only one individual remains and is selected, or until all cases
have been used, in which case a random member of the set of remaining individuals
is selected. Key properties of lexicase selection are (a) it avoids combining all errors
into a single value, (b) because of the random ordering of test cases, every test case
will be most important (first to be considered) at least occasionally, and (c) similarly,
each pair of test cases, and each triple, etc., will be most important now and then.
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3.4 Replace-space-with-newline

The replace-space-with-newline problem is an introductory programming bench-
mark problem taken from (Helmuth and Spector, 2015). Here the program is given
an input string and required to both (a) print the string with all the spaces replaced
by newlines and (b) return an integer that is the number of non-space characters in
the input string. There are 100 different training instances for this problem, each of
which generates two error values: (a) the Levenshtein distance between the printed
output and the target print string, and (b) the absolute difference between whatever
value is on the top of the integer stack and the expected return value. A penalty
value of 1,000 is assigned for test cases that were expecting a return value but found
the integer stack empty. For tournament selection runs, all 200 of these error val-
ues were added together to form the total error, which was used as the fitness for the
individuals. For lexicase selection the errors were kept separate in an error vector of
200 values; this, as we shall see, frequently allowed individuals to be selected who
did well on some test cases, but very poorly on others.

3.5 Our data

In this chapter we explore a subset of the data collected for (Helmuth et al, 2015). In
particular we have the full genealogical records for 100 runs of replace-space-with-
newline using lexicase selection, and 100 runs using tournament selection with tour-
nament size 7. In those runs, 57 of the 100 lexicase runs succeeded, i.e., an individ-
ual was discovered that had zero error on all 200 of the training cases. Tournament
selection only had 13 successes out of 100 runs, so lexicase selection provides a sig-
nificant advantage on this problem. Similar results in (Helmuth and Spector, 2015)
indicate that lexicase is in fact generally much more successful than tournament
selection across a broad range of software synthesis problems.

4 Lexicase, meet Replace-space-with-newline

It’s one thing to know that lexicase succeeds 57 out of 100 times on the replace-
space-with-newline problem, but that leaves us with the crucial question of why? In
order to study this question, we chose one successful run to explore in more detail.
We’re making no claims that this is a “representative” run (whatever that would even
mean); it’s an interesting run, though, and our hope is that by understanding its dy-
namics better we can learn useful things about both the problem and the tools we’re
applying. Looking at this run in some detail certainly unearthed several surprising
results, and in Section 6 we’ll expand our view by looking at some cumulative re-
sults across all 100 lexicase runs.
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87:71987:941 87:94742 Other Winners

Fig. 1 Ancestry of the 45 “winners” from a successful run of replace-space-with-newline using
lexicase. Diamond-shaped nodes had an unusually large number of offspring (over 100 each).
Shaded nodes had at least five offspring that were ancestors of winners.

4.1 Working backwards

A natural place to start our analysis is at the end of the run, when the GP system
created one or more individuals that solved the problem. So we used Neo4j to find
all the ancestors of any “winning” individual, i.e., an individual with a total error of
zero on all 200 test cases. Figure 1 shows the ancestry of all of the winners from
generation 87 (when we first found a winner in this run) back to generation 79.2

Each node in the graph represents an individual, and each directed edge indicates

2 We could certainly have gone back farther in time, but the graph would have become impossible
to read as the number of nodes would have ballooned from a few dozen to hundreds or thousands.
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a parent-child relationship, with the edge going from the parent to the child. The
numbers inside the nodes are Neo4j internal IDs; we’ll use these as “names” for
the individuals as we tell the stories we uncover. Each ID has two parts: the part
before the colon is that individual’s generation, and the part after is effectively just
a random three digit identifier.

Ignoring for the moment the adornments (shape, shading, etc.), there are several
things that we can observe right away:

• There are 45 distinct winners in the final generation, or 4.5% of the population
of 1,000 individual. This tells us that constructing a winner from the individuals
in generation 86 wasn’t entirely trivial, but it also wasn’t a huge challenge and
happened multiple times.

• The 45 winners only had four distinct ancestors in the preceding generation.
• All 45 winners had a single individual (86:261, marked with a large shaded di-

amond near the center bottom) as at least one of their parents, and 42 of them
had 86:261 as their only parent, i.e., they were mutations of 86:261, or were the
result of self-crosses of 86:261. To simplify the graph, we’ve combined those 42
individuals into a single node labeled “42 Other Winners”.

• The number of ancestors of winners doesn’t grow quickly as we move back in
time. We have to go back to generation 80 to find 10 individuals (or 1% of the
population) that are ancestors of winners, and go all the way to generation 63
before over 100 individuals were ancestors of a winning individual.

4.2 Surprising fecundity (especially given that total error)

Looking at Figure 1 we can see that a few individuals have more offspring repre-
sented than others. As we’ve already mentioned, individual 86:261 has 45 successful
offspring, and both individuals 82:447 and 83:047 have five offspring in the graph,
i.e., five offspring that were ancestors of a winning individual in generation 87. Each
of these is marked in Figure 1 with a shaded diamond.

Figure 1, however, only tells us how many offspring an individual had that were
themselves either a winner or an ancestor of a winner, as no other nodes are dis-
played. One might wonder how many total offspring an individual has regardless
of whether they led to a winner. Using a Cypher query to identify the most fecund
ancestors of winners in these last nine generations reveals several things that were
quite surprising. The most remarkable of these was that individual 86:261 was a par-
ent of 934 of the 1,000 individuals in generation 87! Given that lexicase selection
was designed in significant part to spread selection events out across the population,
this makes it clear that there are times when lexicase does the opposite, and instead
puts nearly all its eggs in a single basket. This level of selection focus would simply
be impossible using almost any other common type of selection such as tournament

We went back to generation 79 because that was the most recent generation that had more than 10
distinct ancestors of a winning individual.



10 Nicholas Freitag McPhee, David Donatucci, and Thomas Helmuth

Table 1 The total error and rank (by total error) in the population in that individual’s generation
for the sequence of “diamond” individuals from in Figure 1.

Individual Total error Rank in population

80:220 321 147
81:691 441 268
82:447 107 1
83:124 157 85
84:319 240 188
85:086 100,000 971
86:261 4,034 765

selection; in most uses of tournament selection, for example, no individual can be
in more than a relative handful of tournaments, and thus can’t be a parent terribly
often no matter how fit they are.

While no other node in Figure 1 has nearly as many children as 86:261 did, there
are several that also had very high reproduction rates, putting them well above what
would be possible with something like tournament selection. Individual 82:447, for
example, had 443 offspring, including the 5 illustrated in Figure 1. In fact there
were eight individuals in Figure 1 that have more than 100 offspring; each of these
is indicated with a diamond shape. This highlights a particularly interesting ances-
try chain from 80:220 through 81:691, 82:447, 83:124, 84:319, 85:086 to 86:261,
marked with dashed edges in Figure 1. With the exception of 81:691, which “only”
had 17 offspring, each of these seven individuals had more than 100 offspring, and
thus had a fairly dominate role in shaping that part of the evolutionary process

If we look at the total error in of the individuals in Figure 1, we again find some
surprises that tell us quite a lot about lexicase selection. In particular, if we look at
the total error for each individual along the dashed path from 80:220 through 82:447
to 86:261, the total errors of the first five individuals in the chain are reasonably low.
One (individual 82:447) has the best total error in that generation and all but 81:691
(the individual with only 17 offspring) are in the top fifth of the population when
ranked by total fitness. The fitnesses of the last two (the grandparent and parent
of every one of the 45 solutions), however, came as quite a shock. In particular,
individual 85:086 has a total error of 100,000, placing it very near the bottom of the
population by total error (rank 971). Individual 86:261, which was the parent of 924
of the 1,000 individuals in the next generation, has a total error of 4,034, placing it
below 3/4 of the population in its generation by that aggregate measure.

How could individuals with such terrible total fitness end up being selected so of-
ten as parents? Exploring the specific test case errors reveals that individual 85:086
is perfect on half of the test cases (all those that involve printing), but gets a penalty
error of 1,000 on the other half because it never actually returns a value. Every one
of its ancestors in Table 1, however, has at least a few non-zero errors on the print-
ing test cases, meaning that any lexicase ordering that places a few key printing test
cases before any of the “return” test cases would likely select individual 85:086.
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What about individual 86:261, with it’s 934 offspring? It has error zero on 194
of the 200 test cases. On 4 of the remaining 6 test cases it, like individual 85:086,
fails to return a value and gets the penalty of 1,000; it has an error of 17 on the other
two. Thus it gets 97% of the test cases correct, but happens to be heavily penalized
for its behavior on 4 of the 6 it gets wrong. In a system that aggregates the errors, its
rank of 765 out of 1,000 would mean that it would probably have no offspring. With
lexicase selection, however, it’s success on the 194 test cases means that it is selected
(from this population) almost every time. In fact only 152 of the 1,000 individuals in
the final generation had a parent who wasn’t 86:261, and only 116 other individuals
in generation 86 had an offspring in the next generation. While four of those had 10
or more offspring in the last generation, none of those four actually gave rise to a
winner. The three parents of winners other than 86:261 (individuals 86:272, 86:049,
and 86:672 in Figure 1) had very few offspring (1, 2, and 2 respectively), suggesting
that they may not have contributed much (or anything) to their successful progeny,
and the success of their offspring was due more to the good fortune of mating with
86:261 than anything else.

4.3 How exactly did we get here?

Now that we know quite a lot about who gave rise to those 45 winners, what ge-
netic operations brought them about? The largest group was 18 of the 45 which
came about through uniform-close-mutation alone, all of which were mutations of
individual 86:261. This indicates that success could be achieved via a fairly simple
modification to 86:261’s genome that only modifies where some code blocks end.

The other large group was 17 winners that arose via alternation followed by
uniform-mutation. 14 of these were the result of a self-cross of 86:261 and itself,
with the other three being crosses between 86:261 and the other three parents of
winners (86:272, 86:049, and 86:672). There were also two smaller groups of win-
ners, 6 which were the result of alternation alone (all self-crosses of 86:261), and 4
from uniform-mutation alone applied to 86:261.

An obvious question then is what changed in moving from 86:261 to the final
solutions. The genomes and programs involved are fairly complex (over 200 in-
structions) and, as mentioned earlier, a full analysis of the genomes and behaviors
of the the individuals involved is beyond the scope of this chapter. Such an analysis
is possible, however, and our graph database work has clearly identified individuals
whose genomes and programs deserve additional study.

Based on this exploration, we can also propose a hypothesis for further explo-
ration. 86:261’s total error of 4,034 comes in large part from failing to return a value
on four test cases. A distinct possibility is that 86:261 simply times out on those four
test cases. The efficacy of uniform-close-mutation suggests that there might be some
sequence of instructions that are being executed repeatedly via a loop or recursion,
and there are uniform-close-mutations that shorten that block in ways that allow it to
complete all the test cases within the time limit without changing the value returned.
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5 How is tournament selection different?

In addition to studying lexicase selection, we wanted to collect data from replace-
space-with-new-line with tournament selection in order to compare with our earlier
lexicase results. As noted in Section 4, lexicase produced at least one individual
with an error of zero in 57 of 100 runs while tournament selection only produced
13 of 100 successful runs. In this section we’ll explore one of these 13 successful
tournament runs in a little more detail.

An immediate difference between the lexicase and tournament runs is that there
was only one solution discovered in the tournament selection run, in contrast to the
45 different individuals that solved the problem in the lexicase run.

Figure 2 shows the ancestry of the winning individual from generation 150 (when
the winner was discovered) back to generation 145. It’s clear that the branching fac-
tor in this ancestry is much higher than with lexicase in Figure 1. Table 2(a) shows
the number of ancestors n generations back that contributed to the winning individ-
ual, and we can see that the number of ancestors increases much more quickly for
tournament than lexicase; at 10 generations back, there were approximately three
times the number of contributing parents in tournament as in lexicase. This is likely
partially due to the fact that in lexicase some parents produced a surprisingly large
number of children. Another possible contribution to this asymmetry is a difference
in the role of mutations under lexicase, but we haven’t yet explored that in any detail.

Another major difference was the selection pressure exerted by the two selection
mechanisms. As we saw earlier, in lexicase selection one parent can dominate the
selection if it performs well for a significant number of test cases. However, tourna-
ment selection can never impose such a strong selection pressure. Throughout the
entire run, the most a single parent in the tournament selection run ever produced
was 24 children (see Table 2(b)), and all of the 18 most prolific parents produced
between 17 and 24 offspring. Compare this to lexicase selection, where all of the
18 top parents produced over 200 offspring. This extreme difference in selection
pressure may also help explain the differences in the branching factor of the two
ancestry trees.

We also noticed another crucial difference between the types of individuals se-
lected for reproduction. With tournament selection, the primary bias is towards in-
dividuals that have the lowest total error. However, this is not the case in lexicase
where, as long as an individual performs extremely well for enough cases, it is still
possible to be selected for reproduction, even if it has substantial errors on other
test cases. In this tournament run, for example, every ancestor of the winner in the
last six generations has a total error of either 83 or 132, which is in marked contrast
to the diversity of total errors in the lexicase run (see Table 1). Additionally, across
all individuals chosen as parents in the last 20 generations of the tournament run
(regardless of whether they were an ancestor of the winner), there were as few as
one and at most five distinct total errors within each generation. This suggests that
tournament selection kept mutating and recombining a small set of behaviors until
it managed, essentially by accident, to produce an improved child. Lexicase, on the



Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 13

G
en

 1
42

G
en

 1
43

G
en

 1
44

G
en

 1
45

G
en

 1
46

G
en

 1
47

G
en

 1
48

G
en

 1
49

G
en

 1
50

2
3

3
5

2

3

2
3

3
2

2

2

2

2

2

Fi
g.

2
A

nc
es

tr
y

of
th

e
so

le
“w

in
ne

rs
”

fr
om

ru
n

74
of

to
ur

na
m

en
ts

el
ec

tio
n,

re
pl

ac
e-

sp
ac

e-
w

ith
-n

ew
lin

e.
T

he
fe

w
no

de
s

w
ith

m
or

e
th

an
on

e
of

fs
pr

in
g

th
at

is
an

an
ce

st
or

of
th

e
w

in
ne

r
ar

e
m

ar
ke

d
w

ith
di

am
on

ds
co

nt
ai

ni
ng

th
e

nu
m

be
r

of
ch

ild
re

n
(i

n
th

is
gr

ap
h)

fo
r

th
at

no
de

.M
os

to
f

th
os

e
no

de
s

ha
d

ad
di

tio
na

lc
hi

ld
re

n,
no

tp
ic

tu
re

d
in

th
e

fig
ur

e,
th

at
ar

e
no

ta
nc

es
to

rs
of

th
e

w
in

ni
ng

in
di

vi
du

al
.)



14 Nicholas Freitag McPhee, David Donatucci, and Thomas Helmuth

Table 2 Two examples of the impact of selection on evolutionary dynamics in the two explored
runs. Table (a) lists the number of parents contributing to a winning individual n generations away
for both the lexicase and tournament runs explored in this chapter. The top row, for example, indi-
cates that in the lexicase run there were 58 distinct ancestors of a winning individual 18 generations
before the discovery of a winner, and in the tournament run there were 297 distinct ancestors 18
generations before the discovery of a winner. Table (b) lists the 18 most fecund individuals across
the entirity of each of the lexicase and tournament selection runs.

(a)
Number of ancestors

n Lexicase Tournament

18 58 297
17 52 236
16 46 180
15 49 152
14 45 209
13 46 212
12 41 146
11 29 97
10 22 63
9 14 42
8 14 33
7 10 30
6 9 20
5 7 13
4 6 10
3 7 6
2 6 4
1 4 2

(b)
Number of children

Rank in run Lexicase Tournament

1 934 24
2 657 23
3 594 23
4 590 21
5 433 20
6 326 20
7 297 19
8 294 19
9 285 19

10 283 18
11 279 18
12 271 18
13 234 18
14 220 18
15 212 18
16 205 18
17 203 18
18 202 17

other hand, maintained a much more diverse population and appeared to somehow
leverage that diversity to continue to discover improvements.

6 A few cumulative results

The bulk of this chapter has focused on exploring two specific successful runs on
the replace-space-with-newline problem, one using lexicase selection, and one us-
ing tournament selection. To better understand how well this application of graph
databases scales, we also created two larger cumulative databases (one for lexicase
selection and one for tournament selection), each containing the complete genealog-
ical record for all 100 runs on replace-space-with-newline. Given these cumulative
databases, we were then able to do broad queries against those collections of runs.
These were typically inspired by observations from the explorations of individual
runs, with the broader queries helping us understand to what degree an observation
in an individual run was representative or an outlier.
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An obvious question, for example, is how unusual is the individual we discov-
ered in Section 4.2 that had 934 offspring? Was that an aberration, or are these
kinds of hyper-selected and hyper-fecund individuals a regular occurrence when us-
ing lexicase selection? Querying the combined database revealed that there were 71
individuals in the 100 lexicase runs that were selected more than 900 times, where
the average number of selections in a given generation was 1,700. So each of these
71 individuals received over half the total selections in its generation, and conse-
quently had numerous offspring; all had over 700 offspring out of the 1,000 created
for the next generation. 22 of those 71 individuals had over 900 offspring, with the
biggest winners being two individuals that had 990 and 991 offspring, respectively,
after being selected over 1,600 times each.

These 71 individuals clearly represent a very small fraction of the over 18 mil-
lion nodes encapsulated in our 100 lexicase runs. 50 of the 100 runs, however, had
at least one individual with over 900 selections, so this kind of hyper-selection is
clearly common in the dynamics of these lexicase runs. This sort of hyper-selection
has a profound impact on the dynamics of a run, as almost every individual in the
subsequent generation is a child of the hyper-selected individual, and due to self-
crosses and mutations that individual is often the only parent of those children.
Thus the genetics of that individual are likely to have an enormous influence on
the make-up of the next generation, creating a substantial population bottleneck. So
while those 71 individuals only represent a tiny proportion of the cumulative pop-
ulation, they’re likely to have a tremendous impact on the run dynamics; thus the
ability to identify and examine these individuals is potentially very informative.

One of the other surprises from our earlier exploration is how “unfit” some of
those highly selected individuals were when viewed through the lens of total error.
Turning now to these cumulative results, we find that 15 of these 71 hyper-selected
individuals had total error at or below 10, and so would likely be selected by tour-
nament selection (although never more than a few dozen times). On the other end of
the spectrum, however, 7 of these 71 hyper-selected individuals had total error over
3,000 and would have been extremely unlikely to ever be chosen using tournament
selection. So here again we see a substantial difference between the dynamics of
lexicase and tournament selection, especially given the impact these hyper-selected
individuals have on their runs.

Finally, looking at all 200 runs makes it clear that lexicase and tournament selec-
tion differ considerably in the likelihood of discovering multiple “winning” individ-
uals in the same generation. Over the 100 runs of the replace-space-with-newline
with tournament selection, only 13 runs found a solution with zero total error, and
only one of those runs had more than one solution in the final generation (there were
two). Of the 57 successful lexicase runs, however, 30 (so just over half) had mul-
tiple solutions. Many were only a few (6 runs just had 2 solutions), but 6 runs had
over 30 solutions, including runs with 69 and 74 solutions. This strongly suggests
that when tournament discovered a winning individual, that discovery was fairly
random and therefore had a low probability. The prevalence of multiple solutions
in the lexicase runs, however, indicates that the discovery of those solutions had
a much higher probability. What’s less clear is whether that increased probability
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was driven by lexicase’s hyper-selection in the last generation, or whether lexicase
selection throughout the run had led to Push program structures that were easier to
combine/mutate into winning individuals.

7 So what did we learn in all this?

In this chapter we’ve illustrated the potential of graph databases such as Neo4j
as tools for exploring and analyzing some of the rich matrix of low-level events
that ultimately make up any evolutionary computation run. Here we’ve used graph
databases as a new kind of “lab bench” instrument, allowing us to zoom in and
capture the details of potentially crucial moments in our GP runs.

This has exposed surprising and potentially important properties of lexicase se-
lection. These properties will hopefully help us better understand dynamics of runs
using lexicase, and why those runs are frequently more successful than runs using
tournament selection. A key goal in the original design of lexicase selection (Hel-
muth et al, 2014) was to increase and maintain diversity in GP runs which, as (Hel-
muth et al, 2015) shows, does appear to be the case, with lexicase generally leading
to more diversity than either tournament selection or implicit fitness sharing. One
would, however, typically consider hyper-selection and the consequent population
bottlenecks to be the enemy of diversity, so our discovery of a pattern of individuals
being selected hundreds, and sometimes even thousands, of times was at the very
least striking and worthy of further study.

A key risk in this sort of narrow examination is that one might mistake an obser-
vation for a pattern. Thus there will always be a need for broader summary statistical
analysis. The kind of exploration we’ve demonstrated here will ultimately have to be
used in conjunction with those statistical tools; discoveries in “digs” such as these
can raise questions and suggest hypotheses that can then be supported or refuted
through the use of more “traditional” studies.

One other concern is how to scale our use of graph databases. Databases for in-
dividual runs are quite tractable, and can be populated and explored using basic off-
the-shelf computers. Combing multiple runs, however, presents a number of chal-
lenges. The database containing the 100 lexicase runs, for example, contained over
18 million nodes and over 25 million edges, with the full Neo4j database weighing
in at 18GB. The database combining the 100 tournament runs was even larger be-
cause most of the runs went the full 300 generations: over 28 million nodes, over 48
million edges, and a database of over 31GB. That said, these databases runs reason-
ably on stock desktop hardware, which is how all the results presented here were
generated. To scale up further, however, we’d quickly start to need more specialized
infrastructure to, for example, combine the lexicase and tournament selection runs
into a single database containing the history of those 200 runs, or combining the re-
sults of runs on multiple problems. We have data from thousands of runs (Helmuth
et al, 2015), but bringing that together in a single database is clearly infeasible us-
ing these tools. An alternative to this approach would be to have a host of database
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engines on a cluster, each serving a subset of related data, and then providing tools
that would allow queries to be run across all these endpoints, aggregating those re-
sults into a single response. Version 1.1 of the SPARQL query language (Wikipedia,
2015b), for example, includes support for queries across multiple endpoints and
could potentially be used to run queries across large distributed datasets.
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