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ABSTRACT
This study investigates the performance of several semantic-
aware selection methods for genetic programming (GP). In
particular, we consider methods that do not rely on complete
GP semantics (i.e., a tuple of outputs produced by a pro-
gram for fitness cases (tests)), but on binary outcome vectors
that only state whether a given test has been passed by a
program or not. This allows us to relate to test-based prob-
lems commonly considered in the domain of coevolutionary
algorithms and, in prospect, to address a wider range of
practical problems, in particular the problems where desired
program output is unknown (e.g., evolving GP controllers).
The selection methods considered in the paper include im-
plicit fitness sharing (ifs), discovery of derived objectives
(doc), lexicase selection (lex), as well as a hybrid of the
latter two. These techniques, together with a few variants,
are experimentally compared to each other and to conven-
tional GP on a battery of discrete benchmark problems. The
outcomes indicate superior performance of lex and ifs, with
some variants of doc showing certain potential.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Genetic Programming; Program Semantics; Selection Oper-
ators

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768505

1. INTRODUCTION
One of the primary application areas of genetic program-

ming (GP) is synthesis of programs that operate in discrete
domains. In such cases, it is typically assumed that the ulti-
mate goal of an evolutionary process is to produce a perfectly
working program, i.e., a program that passes all tests (fitness
cases). The degree to which candidate solutions (programs)
in a population meet this goal is measured by an objective
function that counts the number of passed tests. In other
words, such an objective function is the search driver [11,
10] for an iterative, evolutionary program synthesis process.
An objective function that counts the passed tests is sym-

metric with respect to the tests and in this sense totally
unbiased. Only the count of passed tests matters – which of
them a given program passes is irrelevant. In practice how-
ever tests usually differ with respect to difficulty. In particu-
lar, tests may vary in objective difficulty, i.e., the probability
of being passed by a randomly generated program. But they
will often differ also when it comes to subjective difficulty,
meant as the probability that a given program synthesis al-
gorithm (e.g., GP), provided with certain computational re-
sources, produces a program that passes a test. In domain of
test-based problems, the distribution of objective difficulty
among tests is often highly non-uniform [6]. As a result,
scalar objective functions are much less effective in guiding
the search algorithm towards good solutions because pro-
grams that solve k easy tests and ones that solve k difficult
tests are considered equally valuable during selection.
There are several GP extensions that originated in this ob-

servation. In this study, we experimentally compare the pre-
sumably oldest method of this type, Implicit Fitness Sharing
(ifs, [19]) with two approaches proposed recently: discovery
of objectives by clustering (doc, [8, 12]) and lexicase selec-
tion (lex, [4]). Additionally, compared to [8], we consider
a new variant of doc that employs a different clustering al-
gorithm. We present the common conceptual framework in
Section 2, the compared methods in Section 3, present the
results of the experiment involving 18 discrete benchmark
in Section 4, to conclude with Section 5.

http://dx.doi.org/10.1145/2739482.2768505


2. TESTS AND SEMANTICS
We assume that program synthesis task is posed by pro-

viding a set T of tests (fitness cases), where every test
(ini, outi) ∈ T is a pair composed of the input in to be
fed into a program and the corresponding desired output
out. In accordance with most past studies on semantic GP,
in this paper by program semantics (semantics for short) we
mean the vector (tuple) of outputs returned by a given pro-
gram p for a given set of tests (fitness cases) (ini, outi) ∈ T ,
i.e.,

s(p) = (p(in1), p(in2), . . . , p(in|T |)). (1)

Semantic GP methods rely on s to, among others, diversify
populations and design search operators.
The methods considered in this paper rely only indirectly

on program semantics. Rather than inspecting specific out-
put values produced by a program, they are interested only
in whether a given test has been passed. We formalize this
program characteristics as outcome vector

o(p) = ([p(in1) = out1], . . . , [p(in|T |) = out|T |]), (2)

where [·] is Iverson bracket, i.e.,

[x] =
{

1 if x is true

0 otherwise
.

An outcome vector is thus a vector where ones and zeros cor-
respond to passing and failing respective tests. The conven-
tional objective function that counts the number of passed
tests can be formalized as

f(p) =
|T |∑
i=1

oi(p), (3)

where oi(p) denotes the ith element of the outcome vector
o(p).
In the following, we will make use of formalism similar to

o(p): the set of tests T (p) ⊆ T passed by p, i.e.,

T (p) = {(in, out) ∈ T : p(in) = out}.

Conversely, by P (t) ⊆ P we will denote the set of programs
in population P that pass test t = (in, out) ∈ T , i.e.,

P (t) = {p ∈ P : p(in) = out}.

3. THE METHODS

3.1 Implicit Fitness Sharing
Implicit fitness sharing (ifs) introduced by Smith et al.

[19] and further explored in GP by McKay [14, 13] orig-
inates in the observation that difficulty of particular tests
may vary. Although in practice problems with uniform dis-
tribution of test difficulty are less common than problems
where difficulties vary by tests, the conventional fitness func-
tion (Eq. 3) is oblivious to that fact and grants the same
reward of 1 for solving every test in T . This may result in
premature convergence, as the programs in population nat-
urally tend to learn how to pass the easier tests first. In
order to entice a search process to solve the more difficult
tests, it would be thus desirable to increase the rewards for
solving them. However, where can one obtain a reliable in-
formation on test difficulty? The objective and subjective
difficulty discussed in Introduction are of little use here, as

estimating either of them requires running a sample of pro-
grams, and thus incurs additional computational cost.

ifs uses the outcomes of interactions between the candi-
date programs in the working population P and the tests
in T to obtain the difficulty estimates of the latter. Those
interactions have to be carried out anyway, i.e., programs
in P have to be applied to the tests in T , because they are
needed to assess programs’ performance. In this sense, ifs
comes at no additional computational cost.
Given that information, ifs defines its own evaluation

function. The IFS-fitness of a program p ∈ P fitness is
defined as:

fifs(p) =
∑
t∈T (p)

1
|P (t)| . (4)

Note that the denominator Eq. 4 never zeroes, because if
p solves a given t, then P (t) must contain at least p.
The term 1

|P (t)| in (4) is IFS’s measure of difficulty of test
t which depends reciprocally, and thus non-linearly, on the
number of programs failed by t. Importantly, ifs estimates
difficulty from the working population of programs, which is
biased by having evolved under a specific selection pressure.
By the token of expressing test difficulty as a ratio, tests

in ifs can be likened to limited resources: individuals in the
population share the rewards for solving them, where a re-
ward can vary from 1

|P (t)| to 1 inclusive. Higher rewards are
granted for tests that are rarely solved by population mem-
bers (small |P (t)|), and lower for the tests solved frequently
(large |P (t)|). However, the allocation of rewards depends
on the capabilities of the current population, and as such
varies with time. This is in strong contrast to conventional
evolutionary algorithms, where evaluation of a candidate so-
lution is normally context-free, i.e., does not depend on the
other candidate solutions. ifs can be thus seen as a sim-
ple form of coevolutionary algorithm [18], where individuals
compete for tests with each other (even though there are no
direct, face-to-face interactions between individuals, usually
attributed to this paradigm). In a sense, ifs performs au-
tonomous shaping, because by varying the contributions for
solving particular tests it modifies its own training experi-
ence [22].

ifs is commonly considered as a diversity maintenance
technique: an individual that solves a low number of tests
can still survive if its competence is rare. In this way,
ifs helps reducing crowding and premature convergence. It
shares this objective with explicit fitness sharing proposed in
[3], where population diversity is encouraged by monitoring
genotypic or phenotypic distances between individuals. By
allowing the same program to receive different fitness in two
generations of an evolutionary run, ifs may also facilitate
escaping from local minima.

3.2 Discovery of Objectives by Clustering
Discovery of search objectives by clustering (doc) intro-

duced by Krawiec and Liskowski [9] is a method that au-
tonomously derives new search objectives by clustering the
outcomes of interactions between programs in the popula-
tion and the tests. Each derived objective is intended to cap-
ture a subset of ‘capabilities’ exhibited by the programs in
the context of other individuals in population. The derived
objectives replace the conventional fitness function (Eq. 3)
and are subsequently used to drive the selection process in
a single- or multiobjective fashion. doc is inspired by our



Algorithm 1 Discovery of Objectives by Clustering (doc)
Input: Population P and set of tests T .
Output: Derived interaction matrix G′.

1. Calculate the m×n interaction matrix G between the
programs from the current population P, |P | = m, and
the tests from T, |T | = n.

2. Cluster the tests. Every column of G, i.e., the vector
of interaction outcomes of all programs from P with
a test t, are treated as a point in an m-dimensional
space. A clustering algorithm of choice is applied to
the n points obtained in this way. The outcome of this
step is a partition {T1, . . . , Tk} of the original n tests
in T into k subsets/clusters, where 1 ≤ k ≤ n and
Tj 6= ∅.

3. Define the derived objectives. For each cluster Tj ,
we average row-wise the corresponding columns in G.
This results in an m×k derived interaction matrix G′,
with the elements defined as follows:

g′i,j = 1
|Tj |

|Tj |∑
k=1

ok(pi) (5)

where pi is the program corresponding to the ith row
of G, and j = 1, . . . , k.

previous work in coevolutionary algorithms, and builds upon
the approach we designed for test-based problems in [12].

doc requires that the outputs returned by a each program
p ∈ P for a given set of tests (ini, outi) ∈ T are gathered in
an interaction matrix G. For a population of m programs
and a set of n tests, G is an m × n matrix where gij =
[pi(inj) = outj ]. The evaluation phase in the GP algorithm
incorporating doc is summarized in Algorithm 1.
The columns of G′ implicitly define the k derived objec-

tives that characterize the programs in P and form the ba-
sis for selecting the most promising programs from P . In
a simplest case, they can be employed as objectives in con-
ventional multiobjective evolutionary methods, such as the
NSGA-II [2].
Derived objectives d1, d2, . . . , dk ∈ D can be also used to

drive the selection in a single-objective manner using for this
purpose the hypervolume of program’s performance, i.e.,

h(p) =
k∏
i=1

di(p). (6)

The use of the hypervolume of a program’s performance as
a search objective can be viewed as a method that promotes
balanced performance on all of the derived objectives.

doc is designed to be sensitive to inherent difficulty of
tests by avoiding the problem of compensation deeply rooted
in aggregating fitness functions (cf. Section 1). For this
purpose, doc transforms a single objective-problem given
by the original objective function into a multi-objective one
to facilitate the use of dominance relation:

p1 �D p2 ⇐⇒ ∀d∈D : d(p1) ≥ d(p2)∧∃d∈D : d(p1) > d(p2).

The derived objectives form a multi-objective characteriza-
tion of the candidate solutions in the context of the current

Algorithm 2 Lexicase Selection (lex)
Input: Population P and set of tests T .
Output: The selected individual.

1. Let P ′ ← P and T ′ ← T .

2. Draw at random a test t ∈ T ′.

3. Set P ′ ← P ′ ∩ P (t) and T ′ ← T ′ \ {t}.

4. If |P ′| > 1 and |T ′| > 1 go to step 2.

5. If |P ′| = 1, return the only element of P ′; otherwise
return a randomly selected element in P ′.

population of test, yet they do not guarantee to preserve the
original dominance relation defined in the space of tests. As
a result of clustering, some information about the dominance
structure can be lost, however this inconsistency brings a
critical advantage: the number of resulting derived objec-
tives is low, so that together they are able to impose an
effective search gradient on the evolving population. Fur-
thermore, by implementing selection in the space of derived
objectives, candidate solutions that feature different ‘skills’
can coexist in population even if some of them are clearly
better than others in terms of number of tests they pass.

3.3 Lexicase Selection
Lexicase selection (lex in the following) is a semantic-

aware selection technique recently introduced by Spector
[20]. Recent experiments by Helmuth et al. [4] demonstrate
LEX’s strengths in problem solving and diversity mainte-
nance.
A single act of applying lex to a given population P under

the set of tests T , phrased using the formalisms provided in
Section 2, proceeds as in Algorithm 2.
Every selection act (resulting with a single program) re-

quires an independent run of the above algorithm. In the
worst case, the loop comprising the lines 2–4 of the algo-
rithm needs to iterate over all tests. Similarly to doc, in
addition to rewarding the programs for solving test cases,
lexicase selection promotes diversified programs that pass
randomly selected subset of tests. In this way, different tests
are emphasized in each selection event. An individual that
passes test(s) that are rarely passed by its competitors has
substantial chance to propagate to the next generation even
if it performs poorly on many other test. For instance, if
an single individual alone has the best error for a particu-
lar case then that individual will be selected whenever that
case comes up first in the random ordering, regardless of its
error on other cases. This is an extreme situation — often
it won’t be just a single individual, and/or sets of cases will
be relevant.
Note that in contrast to ifs and doc, lex does not ex-

plicitly define any objectives or alternative fitness functions.
In this sense, it is ‘natively’ a selection method.

3.4 Hybridizing DOC with LEX
In its original form, the derived objectives identified by

doc are based on disjoint subsets of tests and drive the se-
lection process in either single- or multi-objective fashion. In
earlier studies, we typically combined it with NSGA-II [2],
to avoid aggregation of interaction outcomes with all tests



Algorithm 3 doclex selection.
Input: Population P and set of derived objectives D.
Output: The selected individual.

1. Let P ′ ← P and D′ ← D.

2. Draw at random a derived objective d ∈ D′.
Let Pd ⊆ P ′ be the subset of programs that perform
the best on d.

3. Set P ′ ← Pd and D′ ← D′ \ {d}.

4. If |P ′| > 1 and |D′| > 1 go to step 2.

5. If |P ′| = 1, return the only element of P ′; otherwise
return a randomly selected element in P ′.

into single scalar value, which is characteristic for the tra-
ditional objective function discussed in 1. One of the main
motivations for lexicase selection was also to avoid such ag-
gregation, and the decisions based in particular iterations of
Algorithm 2 are based on distinct tests. These observations
encourage combining both methods into a hybrid approach
in which lexicase selection is performed on the derived ob-
jectives.
Technically, we first derive new search objectives using Al-

gorithm 1. Subsequently, we apply Algorithm 2, using the
particular derived objectives di as if they were test cases in
lexicase selection. In each iteration, a derived objective is
drawn at random. Then, individuals in the population that
do not achieve the best performance on that objective are
eliminated. If more than one individual remains, the pro-
cess repeats, eliminating any remaining individuals that do
not achieve the best performance on the next derived objec-
tive drawn at random. This process continues until only one
individual remains and is selected, or until all derived objec-
tives have been processed, in which case a random program
is selected from the remaining programs remaining.
The complete process is shown in Algorithm 3. In the

following, we refer to it as doclex.

4. EXPERIMENTS
We examine the performance of sematic-aware selection

methods in the domain of tree-based GP. The compared
algorithms implement generational evolutionary algorithm
and vary only in the selection procedure. Otherwise, they
share the same parameter settings, with initial population
filled with the ramped half-and-half operator, subtree-replacing
mutation engaged with probability 0.1 and subtree-swapping
crossover engaged with probability 0.9. We run experi-
ments lasting up to 200 generations with population size
|P | = 1000. The search process stops when the assumed
number of generation elapses or an ideal program is found;
the latter case is considered a success.

Compared algorithms. We begin by describing the vari-
ants of doc. Following our previous study, we employ x-
means [16] to group similar tests in the basic variant of
doc (line 2 of Algorithm 1). x-means is an extension of
the popular k-means algorithm that autonomously picks a
number of clusters k that leads to clustering maximizing the
Bayesian Information Criterion. In the experiments, we al-
low x-means consider k ∈ [1, 5] and employ the Euclidean

Algorithm 4 Estimating number of derived objectives us-
ing Gap Statistics
Input: Interaction matrix G, max number of objectives K.
Output: Expected number of objectives k.

1. For k = 1, . . . ,K do:

(a) Run a k-means on G to find initial clusters
T1, . . . , Tk. Compute the dispersion:

Wk =
k∑
r=1

1
2|Tr|

Dr,

where Dr =
∑

i,j∈Cr
dij is the sum of pairwise

distances for all points in cluster r.
(b) Generate a set of reference distributions by sam-

pling uniformly from G’s bounding rectangle.
(c) Define k−th gap:

Gapk = IE[log(Ŵk)]− log(Wk)

where IE[log(Ŵk)] denotes expected dispersion of
the reference distributions.

2. Select the number of objectives to be the one that gives
the maximum gap, i.e., k = arg maxkGapk.

metric to measure the distances between the observations
(the columns of G). doc employs NSGA-II to perform mul-
tiobjective selection in the space of derived objectives.
Another variant of doc, docp, uses the derived objectives

as dimensions in a hypervolume of program’s performance
and multiplies them together to obtain scalar fitness (Eq.
6). Fitness values calculated in this way are subsequently
used in a tournament selection scheme with tournament size
of 7.
We also consider two variants of doc that incorporate

other approaches to automatic selection of k. First of them,
docgap, employs the gap statistics [23]. Given clustering
C1, . . . , Ck and within-cluster sum of squaresWk around the
cluster means, the basic principle behind the approach is to
standardize the graph of log(Wk) by comparing it with its
expectation under an appropriate null reference distribution
of the data. See Algorithm. 4 for complete description of
the method.
Although gap statistics has been shown to find the opti-

mal number of clusters in variety of cases, its performance
might be hampered by the need of performing Monte Carlo
simulations to estimate the reference datasets. In [17] Pham
et al. address this issue and propose to estimate the clus-
tering performance on the uniformly distributed reference
dataset. Furthermore, the measure f(k) given below is used
to evaluate the clustering result:

f(k) =


1 if k = 1

Wk
αkWk−1

if Wk−1 6= 0,∀k > 1
1 if Wk−1 = 0, ∀k > 1

αk =
{

1− 3
4|P | if k = 2 ∧ |P | > 1

αk−1 + 1−αk−1
6 if k > 2 ∧ |P | > 1



where αk ∈ [0, 1] is the weight factor used to reduce the
effect of high data dimensionality. Areas of concentration
in the data distribution cause the ratio of real distortion to
the estimated distortion to decrease and as such values of k
that yield small f(k) can be regarded as giving well-defined
clusters. docfk employs f(k) to evaluate clustering result
and choose the optimal k for the given data.
Apart from these variants of doc, we run the conventional

Koza-style GP (gp in the following), which employs tourna-
ment of size 7 in the selection phase, implicit fitness sharing
(ifs, Section 3.1) also with tournament of size 7, lexicase
selection (lex) [4] (Section 3.3) and doclex, the hybrid of
doc and lex proposed in Section 3.4.

Benchmark problems. In this study, we limit our interest
to problems with discrete interaction outcomes since both
doc and lex were designed with such problems in mind.
The first group are Boolean benchmarks, which employ in-
struction set {and, nand, or, nor} and are defined as fol-
lows. For an v-bit comparator Cmp v, a program is required
to return true if the v

2 least significant input bits encode a
number that is smaller than the number represented by the
v
2 most significant bits. In case of the majority Maj v prob-
lems, true should be returned if more that half of the input
variables are true. For the multiplexer Mul v, the state of
the addressed input should be returned (6-bit multiplexer
uses two inputs to address the remaining four inputs). In
the parity Par v problems, true should be returned only for
an odd number of true inputs.
The second group of benchmarks are the algebra prob-

lems originating from Spector et al.’s work on evolving alge-
braic terms [21]. These problems dwell in a ternary domain:
the admissible values of program inputs and outputs are
{0, 1, 2}. The peculiarity of these problems consists of using
only one binary instruction in the programming language,
which defines the underlying algebra. For instance, for the
a1 algebra, the semantics of that instruction is defined as
follows:

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

In the following, the employed algebra is indicated by the
number in suffix part of the evolved term’s name. See also
[21] for the definitions of the remaining four algebras. For
each of the five algebras considered here, we consider two
tasks (of four discussed in [21]). In the discriminator term
tasks (Disc in the following), the goal is to synthesize an ex-
pression that accepts three inputs x, y, z and is semantically
equivalent to the one shown below:

tA(x, y, z) =
{
x if x 6= y

z if x = y
(7)

There are thus 33 = 27 fitness cases in these benchmarks.
The second tasks (Malcev), consists in evolving a so-called
Mal’cev term, i.e., a ternary term that satisfies the equation:

m(x, x, y) = m(y, x, x) = y (8)

This condition specifies the desired program output only for
some combinations of inputs: the desired value form(x, y, z),
where x, y, and z are all distinct, is not determined. As a
result, there are only 15 fitness cases in our Malcev tasks,

the lowest of all considered benchmarks. The motivation
for the discriminator and Mal’cev term problems is origi-
nally that they’re of interest to mathematicians [1]. In this
paper, however, we chose them as benchmarks because of
their difficulty and formal elegance.

Performance. Table 1 reports the success rates of particu-
lar algorithms, resulting from 50 runs of each configuration
on every benchmark. To provide an aggregated perspective
on performance, we employ the Friedman’s test for multiple
achievements of multiple subjects [7].
Friedman’s test operates on average ranks, which for the

considered methods are as follows:

lex ifs docp docfk docgap doclex doc gp
2.05 2.94 3.58 4.27 4.80 5.36 5.94 7.02

The p-value for Friedman test is � 0.001, which strongly
indicates that at least one method performs significantly
different from the remaining ones. We conducted post-hoc
analysis using symmetry test [5]: bold font marks the meth-
ods that are outranked at 0.05 significance level by the first
method in the ranking.

Program size. The ranking of configurations according to
the size of the best-of-run program is as follows (the smaller
programs, the lower rank):

lex docgap doclex docp doc ifs docfk gp
1.67 2.89 2.92 3.31 3.78 3.95 4.12 5.39

The best-of-run programs produced by lex turn out to be
the smallest on average. To an extent this was expected: lex
achieves the best success rate, and the runs of this method
last for the lowest number of generations on average (we do
not report the average run length for brevity). As programs
in GP tend to bloat with time, the best programs found in
the early stages of evolution are likely to be smaller than
their counterparts in the later stages.
However, ifs, which fared almost as well as lex on suc-

cess rate, turns out to produce much larger programs, al-
though its average run lengths (not reported here) do not
diverge much from those of lex. Apparently, some other as-
pect must be involved here that causes lex to yield succinct
solutions. Interestingly, the only other method involving
lexicase algorithm, doclex, is the runner-up in this rank-
ing. This may suggest that the particular way the lexicase
algorithm selects candidate programs happens to promote
more compact solutions. We have no sound hypothesis that
would hint to possible explanations of this phenomenon, and
intend to investigate it in further studies.

5. DISCUSSION
We interpret the high performance of lex and ifs primar-

ily as a strong indicator of the importance of diversification.
In lex, every test has the same chance of becoming a deci-
sive factor in selection and, in consequence, programs that
pass different tests can coexist in an evolving population. In
particular, even if a program passes few tests (compared to
other programs in a population), it has substantial chance
to be selected if the tests it passes are rarely passed by com-
petitors in population. ifs is similar to lex in this respect.
On the other hand, we hypothesize that lex is also quite

resistant to overspecialization (also known as focusing in



Table 1: Success rate and average program size of best-of-run individuals aggregated over 50 evolutionary runs. In case of
disc and malcev benchmarks, suffix indicates the underlying algebra. Bold marks the best result for each benchmark.

Success rate (percent) Average program size [nodes]
gp ifs doc docgap docfk docp lex doclex gp ifs doc docgap docfk docp lex doclex

Cmp6 36 100 54 84 100 98 100 100 215 175 146 175 201 174 128 132
Cmp8 0 78 0 0 0 34 100 50 272 335 77 94 166 264 292 317
Maj6 51 100 22 12 98 100 100 100 226 213 192 178 239 215 159 201
Maj8 0 45 0 0 0 0 80 0 451 492 102 109 231 280 499 364
Mux6 98 100 96 98 100 100 100 100 116 87 121 113 118 93 68 73

Mux11 45 100 0 0 0 88 100 76 291 286 107 143 186 244 216 279
Par5 4 38 2 0 8 6 92 4 327 365 251 189 310 316 335 329
Par6 0 0 0 0 0 0 0 0 374 329 169 166 268 235 322 305
disc-1 0 74 48 44 62 74 100 34 13 140 153 154 152 136 137 129
disc-2 2 74 50 72 62 94 100 30 64 153 147 163 140 146 120 126
disc-3 22 98 96 100 98 94 100 96 129 125 147 156 136 112 83 127
disc-4 0 38 14 16 6 32 96 2 3 172 170 160 155 180 182 65
disc-5 0 84 70 62 72 94 100 52 8 120 139 157 132 139 108 127

malcev-1 88 100 96 100 100 100 100 82 111 87 104 111 112 96 76 103
malcev-2 58 98 88 100 100 100 100 80 100 96 106 106 94 87 69 96
malcev-3 78 100 98 100 100 100 100 100 143 98 122 117 126 102 69 94
malcev-4 14 86 74 100 98 86 98 18 71 90 131 111 129 109 87 53
malcev-5 92 100 100 100 98 100 100 96 82 65 70 82 66 63 52 63

coevolutionary algorithms). A highly specialized ‘outlier’
program p with a unique capability of passing a specific test
t is not certain to survive, because the a priori chance that a
selection act involves t is relatively low. For this to happen,
t needs to be drawn in the early iterations of the lexicase
loop (steps 2-4 in Algorithm 2): if an earlier iteration picks a
test failed by p, p is discarded from the working set P ′. ifs,
to the contrary, is very eager in supporting outliers: being
the only program that passes a given test in a population P
results in a |P |-times higher positive contribution to fitness
than passing a test that all programs in P pass (Eq. 4). For
the population size of 1000 used in this study, these rewards
differ by three orders of magnitude.
All in all, lex promotes diversification of skills in popu-

lation while preventing excessive specialization. To be se-
lected, a program needs to be also robust, i.e., successfully
compete with other programs on various random sequences
of tests considered in the lexicase loop.
The performance of doc’s hybrid with lex (doclex), the

novel contribution of this paper, is substantially worse at the
moment. Our working explanation is that lex is likely to
perform well when the number of tests is relatively large, and
this is the case when it is applied directly to the benchmarks
in this study. doc, on the other hand, rarely produces more
than a few derived objectives. When forced to work with
just a handful of derived objectives, lexicase selection may
find it difficult to diversify the population well enough. We
plan to address this issue in the further research.
Of all the methods that work with derived objectives, we

observe the best performance for docp, the variant of doc
that naively aggregates the derived objectives into a sin-
gle scalar value, i.e., hypervolume. This corroborates our
result obtained earlier in [9]. We attribute this regularity
to the fact that, with all the shortcoming resulting from
aggregation, scalar fitness makes it possible to enforce suffi-
ciently strong selection pressure on an evolving population
(controlled in our case by the size of tournament). All the
remaining variants of doc interpret the derived objectives
in multiobjective fashion, and the strength of the resulting
selection pressure depends in part on the number of derived
objectives. In general, the more objectives, the weaker the
pressure: higher number of objectives makes it more likely

for two candidate programs to be mutually non-dominated,
and thus occupy the same Pareto rank.

6. CONCLUSIONS
In this paper, we explored and compared several selection

methods that, to a greater or lesser extent, avoid aggrega-
tion of outcomes of interactions between programs and tests
(fitness cases). All these techniques performed on average
better than the baseline GP equipped with tournament se-
lection based on the conventional scalar objective function
that simply counts the number of passed tests. We take it
as an evidence that methods that widen the ‘evaluation bot-
tleneck’ [11] are worth pursuing. A selection method that is
better informed about the detailed characteristics of candi-
date solutions may help maintaining diversified skills in an
evolving population while still imposing efficient gradient on
it.
To operate, the methods considered in this paper need

only outcome vectors of programs in population (Eq. 2).
The exact knowledge of program semantics (Eq. 1) not nec-
essary (though one might conceivably come up with some
extensions to take that information into account). On one
hand, this deprives these methods of more detailed informa-
tion on program behavior, which could be potentially ex-
ploited to make search process more efficient, as practiced
in typical approaches to semantic GP, in particular geomet-
ric semantic GP [15]. On the other hand, outcome vectors
allow embracing a broader class of problems in which the de-
sired semantics (i.e., the semantics of the sought program)
is not known. For instance in typical control problems, the
optimal control signal is not given explicitly. The perfor-
mance of a controller can be assessed only by running it
in a given environment (corresponding to a test in this pa-
per). The result of such interaction, expressed in terms of
domain-specific performance measure, determines one ele-
ment of an outcome vector. Semantic-aware methods that
rely on outcome vectors allow thus reach out beyond the typ-
ical semantic GP setting and relax the original formulation
of program synthesis task.
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