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Abstract 022

For the past seven years, researchers in genetic programming and other 023

program synthesis disciplines have used the General Program Synthe- 024

sis Benchmark Suite (PSB1) to benchmark many aspects of systems 025

that conduct programming by example, where the specifications of the 026

desired program are given as input/output pairs. PSB1 has been used 027

to make notable progress toward the goal of general program synthesis: 028

automatically creating the types of software that human programmers 029
code. Many of the systems that have attempted the problems in PSB1

have used it to demonstrate performance improvements granted through 030
p p g g

new techniques. Over time, the suite has gradually become outdated, 031

hindering the accurate measurement of further improvements. The field 032

needs a new set of more difficult benchmark problems to move beyond 033

what was previously possible and ensure that systems do not overfit to 034

one benchmark suite. 035

036

In this paper, we describe the 25 new general program synthe- 037

sis benchmark problems that make up PSB2, a new benchmark 038

suite. These problems are curated from a variety of sources, includ- 039

ing programming katas and college courses. We selected these prob- 040
lems to be more difficult than those in the original suite, and give

results using PushGP showing this increase in difficulty. We addi- 041

tionally give an example of benchmarking using a state-of-the-art 042

parent selection method, showing improved performance on PSB2 043

while still leaving plenty of room for improvement. These new prob- 044

lems will help guide program synthesis research for years to come. 045

046
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2 Applying Genetic Programming to PSB2

Keywords: automatic program synthesis, benchmarking, genetic
programming

1 Introduction

Automatic general program synthesis, with the aim of automatically gener-
ating programs of the type humans write from scratch, has long been a goal
of artificial intelligence and machine learning. Yet, for many years there were
no common benchmark problems for evaluating general program synthesis®
systems; existing problems were either easy toy problems or were situated in
specific domains where solution programs were composed of a small set of
domain-specific instructions. In 2015, the General Program Synthesis Bench-
mark Suite (PSB1) introduced 29 programming by example problems that can
be used to benchmark program synthesis systems that take their specifica-
tions as input/output examples [1]. Since then, more than 100 research papers
have benchmarked 10+ program synthesis systems using PSB1, producing
numerous insights into program synthesis.

Of the systems that have adopted PSB1, most fall within the field of
genetic programming (GP), including PushGP [1], grammar-guided GP [2],
grammatical evolution [3], and linear GP [4]. However, non-evolutionary pro-
gram synthesis methods have also been applied to PSB1, including those based
on delayed-acceptance hillclimbing [5] and Monte Carlo tree search [6]. We
expand on the details of these methods and the results they have achieved using
PSBI1 in Section 2, but to summarize, many of these systems have improved
performance and demonstrated new techniques.

When PSB1 was first introduced, the initial PushGP benchmarking runs
were able to solve 22 of the 29 problems, with an average success rate of 23
successful runs out of 100 [1]. The best-performing PushGP results have now
solved 25 problems, with an average success rate of 42/100 [7, 8]. Some of
the most drastic improvements have come on some of the most informative
problems in PSB1, such as Double Letters (6 — 50 successes between [1] and
[7]), Replace Space with Newline (51 — 100), Syllables (18 — 64), Vector
Average (16 — 97), and X-Word Lines (8 — 91).

Thus, for PushGP and other synthesis systems, the problems of PSB1 have
become less useful over time. In particular, the very high performance achieved
on some PSB1 problems leaves little room for exhibiting improvement; a few
other problems have never been solved and are likely too difficult to be solved
any time soon. Additionally, peculiarities in some of the problems in PSB1
make them less ideal as benchmarks, either because of how synthesis systems
move through their search space or how slow they are to run. Finally, some
decisions about the specification of problems in PSB1 make them difficult to
implement, potentially preventing wider adoption.

L Also known as automatic programming or software synthesis.
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With these drawbacks in mind, we have created a second Program Syn-
thesis Benchmark suite, which we refer to as PSB2. PSB2 consists of 25
problems curated from programming challenges, programming katas, and col-
lege courses. In order to facilitate the implementation of PSB2 in new synthesis
systems, we provide a reference implementation of each problem, datasets that
can be sampled for each problem, and libraries for downloading and sampling
the datasets.? Just like PSB1, the problems in PSB2 require a wide range
of programming techniques, data types, and control flow structures to solve.
However, they are markedly harder to solve than problems in PSB1, with our
initial results solving 13 of the 25 problems for an average success rate of 10
successful runs out of 100. These more difficult problems will drive program
synthesis research toward solving more realistic program synthesis tasks.

The purpose of benchmark problems is to allow us to empirically show
what changes to a system produce improvements that may transfer to real-
world problems. To achieve this goal, they must be sufficiently difficult, unlike
toy problems that have been used as benchmarks in the past. They must
also be representative of the types of tasks we want our system to perform.
However, we also want benchmarks to be easier and faster to run than an actual
real-world problem in order to produce benchmarking results with reasonable
amounts of computation. Given that automatic program synthesis is still in
its fledgling stages, we see the problems in PSB2 as a stepping stone toward
solving more realistic problems.

PSB2 also addresses calls from the GP community to produce and adopt
realistic benchmarks. GP community discussions calling for better bench-
marks [9-11] inspired the creation of PSB1; these calls also highlighted the
need to periodically update and replace benchmark problems in order to
keep advancing the field without over-optimizing to a single set of problems.
More recently, a call to refocus the efforts of GP on automatic programming
stated, “We are in no doubt of the need for the further principled develop-
ment of additional benchmarks that can be used in a targeted manner to push
the boundaries along different dimensions such as scalability, generalisation,
and adaptation, and to facilitate comparison across a range of very different
approaches to automatic programming” [12]. The creation of PSB2 aims to
push the boundaries of program synthesis research and give synthesis systems
a fresh set of problems to explore. Of course, there is no need to entirely throw
out the problems of PSB1; we could imagine some of the harder problems con-
tinuing to provide useful data, and newer systems may need to start on the
easier problems as a jumping off point.

PSB2 was originally introduced at the 2021 Genetic and Evolutionary Com-
putation Conference, where it was nominated for Best Paper in the Genetic
Programming track [13]. This article expands on that work by extending the
discussion of best practices for benchmarking program synthesis using GP, pre-
senting new experiments, and adding a discussion of related program synthesis

?Reference implementation, datasets, and other resources can be found on this paper’s
companion website: https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html.
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techniques. In the new experiments, we use PushGP with down-sampled lexi-
case selection [7, 8], improving the number of problems solved from 13 to 17,
and additionally conduct a control study using random search to ensure that
program synthesis is necessary to solve these problems.

The remainder of this paper is structured as follows: in the next section,
we discuss research that has used PSB1. In Section 3, we highlight lessons
learned about program synthesis benchmarking from PSB1. Sections 4 and 5
describe the sources of PSB2’s problems and describe the problems in detail.
We then give general guidance on benchmarking with PSB2, and give details
of the parameters we used in our experiments in Sections 6, 7 and 8. Sections 9,
10, and 11 present initial results using PushGP, a control study using ran-
dom search, and a benchmarking study showing improved performance using
down-sampled lexicase selection. Finally, Section 12 situates PSB2 in the larger
field of program synthesis, discussing how specifications are defined in various
subfields.

2 Past Research Using PSB1

PSB1 has been used in a variety of research projects on automatic program
synthesis, many of them using GP as the synthesis system. A recent survey
gives details of the methods that have been used to solve the problems in
PSBI1, as well as analyzing the difficulties of the problems [14].

The paper that introduced PSB1 [1] used PushGP, a GP system based on
the stack-based Push programming language; a variety of papers using PushGP
have made use of PSB1 since [7, 8, 15-20]. Code-building GP is a stack-based
GP system borrowing some inspirations from Push that constructs programs
in a host language; it solved some of the PSB1 problems, producing solution
programs Synthesized in Python [21].

General program synthesis requires the manipulation of multiple data
types; stack-based GP systems have handled this requirement well, but so
have other GP systems that handle strong typing of programs. In particular,
grammar-based approaches such as grammar guided GP (G3P) [2, 22-24] and
grammatical evolution (GE) [3, 25-27] have made good progress at solving the
problems in PSB1. Many of these use the type-based grammar design patterns
introduced to flexibly handle problems with different type requirements [2].
Another use of these grammars trains a sequence-to-sequence variational
autoencoder to embed programs in a continuous space and then uses an evolu-
tionary algorithm to optimize programs in this space [28]. Finally, a linear GP
system with tag-based memory has also been explored using PSB1 [4, 29, 30].

As for non-GP systems, an approach using delayed-acceptance hillclimb-
ing for inductive synthesis proved competitive with GP on PSB1, including
producing the only known solutions to the Collatz Numbers problem [5]. A
comparison was made between Flash Fill [31], MagicHaskeller [32], PushGP,
and G3P, finding that the non-GP methods fared much worse but ran much
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faster than the GP methods [33]. Finally, Monte Carlo tree search was used
to generate Java bytecode programs using a few of the problems in PSB1 [6].

3 Lessons Learned

While PSB1 has been successfully used in a variety of research, it was a first
attempt at a general-purpose program synthesis benchmark suite. The research
community has grown from using it, both in terms of improving program
synthesis methods as well as learning lessons about how to best define program
synthesis benchmarks. Here, we discuss some of those lessons and how they
have influenced our creation of PSB2.

One major issue with PSB1 is that every system that uses it needs to
implement all of the problems from scratch. This hurdle likely decreased wider
adoption. Additionally, there may be inconsistencies between implementations
in different systems, leading to less comparable results; one known such incon-
sistency is that some systems use new randomized data for each run, while
others use the same dataset for every run. Four years after its initial release,
the authors of PSB1 created large datasets of the inputs and correct outputs
for each problem [34]. These datasets can be sampled for each program synthe-
sis run, meaning there is no need for each system to implement each problem.
We have copied this model and provide datasets for each problem in PSB2, as
well as software libraries to make them easier to use (see Section 6).

A handful of the problems in PSB1 require programs to produce Boolean
outputs, as such functions are common in programming exercises. A trend
noted across completely different program representations is that solutions
to these Boolean-output problems often do not generalize to unseen data [1,
22]. A simple explanation for this phenomenon is that it is relatively easy
for a solution program to produce the correct answers for the wrong reasons
when there are only two possible answers, thus overfitting to the training data.
It is much harder to perfectly answer training data for the wrong reasons
when the output is an integer or string, for example. Because of this issue,
we have selected fewer Boolean-output problems for PSB2, including only one
representative problem.

PSB1 was designed to emulate the textbook problems it was curated from
as closely as possible. For example, many problems from the original textbook
required the program to “print” its answers. PSB1 suggested that synthesis
systems develop methods for emulating an output buffer and common printing
instructions in order to mimic these problems. However, this approach was
infeasible for some synthesis systems, which instead simply returned string
outputs. As PSB2 is less loosely coupled with its problem sources, we decided
to have all programs return their outputs instead of “printing” them. Another
wrinkle related to outputs is that some problems require a solution to return
multiple outputs. While multiple outputs may prove difficult in some systems,
it is generally feasible in all; we have included 4 multi-output problems in
PSB2.
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PSB1 recommended different training and test set sizes, as well as program
evaluation budgets, for each problem. This led to difficulties and confusion in
both implementation and reporting results. For PSB2, we recommend using a
fixed setting for each parameter across problems, as well as for system-specific
parameters, such as maximum sizes for program size control.

Forstenlechner et al. [22] discussed understanding and refining the prob-
lems in PSB1, making some general recommendations about both synthesis
systems and benchmark problems. One suggestion put forth is using larger and
more targeted training sets, to better guide synthesis and increase generaliza-
tion. We take this recommendation and use large training sets (200 examples)
that have a variety of specific edge cases purposefully included. Most of their
other suggestions relate to specific system settings, such as the length of evo-
lution; these parameters are not prescribed by PSB2, and can be chosen by
the researcher.

Our approach to progressing the field of general program synthesis is an
incremental one by design: researchers have improved synthesis systems on the
problems of PSB1, so now we wish to find improvements on the moderately
more difficult problems of PSB2. However, we could imagine other approaches
that could be used to progress the field besides an incremental approach, and
other researchers may choose to use these instead. For example, we could
create significantly more challenging problems, beyond the capabilities of any
current synthesis system. Then, we could work on methods to solve those
problems directly, with the hope that working on a more difficult task will
allow for the creation of new techniques that may not be obvious with a more
incremental approach. The drawback here is that until some method actually
solves the problem, there is not much gradient for the research community to
follow in order to learn which methods are more promising. Thus we prefer an
incremental approach, with benchmarking and comparison of existing methods
using moderately more difficult problems.

4 Problem Selection and Sources

Below we describe the four sources we used as inspiration for the problems
included in this suite. Each of these sources contains problems for humans to
use to improve their programming skills, whether for experienced programmers
or students in class. As such, these sources contain problems representative of
the types of programming that we expect humans to perform.

Code Wars (CW) - A website full of user-created programming chal-
lenges, called coding kata. The aim of the site is for users to spend small
amounts of time programming every day to hone their coding skills.

Advent of Code (AoC) - An Advent calendar of coding problems created
every year in December. These problems can be used for any number of things,
like training, interview prep, or coursework. Problems tend to become harder
throughout the month.
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Homework Problems (HW) - These problems come from programming
homework given in our undergraduate programming courses. The problems
come from two courses: an introductory programming course, and a program
languages course. These problems do not have citations, since we created them
for our courses.

Project Euler (PE) - A website containing hundreds of problems in an
archive. Users are free to submit answers to validate their solutions. Most
problems tend to be mathematically focused and often require efficient and
elegant solutions.

These sources contain a large number and variety of problems; we consid-
ered over 75 problems from these sources and implemented and tested over
50 of them, filtering out problems that seemed too easy, too difficult, or inac-
cessible. While curating the suite, we did not include any problems on which
standard PushGP produced a success rate over 60% in initial experiments, to
ensure that problems are sufficiently difficult to allow for improvement. While
other GP systems surely will find some of these problems easier or harder than
PushGP, as they have with PSB1, we hope a combination of subjective cura-
tion and objective results using PushGP will give a good balance of problems
that are moderately more difficult than the problems in PSB1 for any system.
In order to be transparent about our curation process, we have created a table
containing all of the problems we considered, including the reason for accept-
ing/rejecting each problem, initial results if we implemented the problem, and
a link to the source of the problem.?

We aimed to include problems that require a large variety of data types
and control flow structures to solve, with a balance between data types across
problems. Most of the problems require some type of iteration and/or con-
ditional statements. Required data types include integers, floats, Booleans,
characters, strings, vectors of integers, and vectors of floats. In order to pro-
duce large datasets, we aimed to select problems that have at least 1 million
possible unique inputs.

5 Problem Descriptions

Below is a list of the English language descriptions of the 25 benchmark prob-
lems in PSB2. Each problem (besides those from our courses) has a citation of
its source with a link to the original problem. The types of the input(s) and
output(s) for each problem are given in Table 1. Because the type(s) of control
flow that are necessary to solve a problem can be a large influence on how dif-
ficult it is, we give our best prediction as to which types of control flow will be
necessary to solve each problem in Table 2. Note that all problems that require
vector/string processing (considering individual elements or characters) must
also require iteration over those elements/characters, but we include it as a
separate category to distinguish it from problems that simply need iteration

3https://docs.google.com /spreadsheets/d/e/2PACX-1vQKO1D2sZA9KosXpOJNui
DW6yDQEZnMrwzNeMJJU25MbZhU60dQ0jGkJN5lgbRgspsmmum65WLbEI2B/pubhtml?gid=
0&single=true
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Table 1 For each problem, the types of the inputs and outputs, and the limits imposed
on the inputs.

Problem Inputs Outputs
Basement vector of integers of length [1,20] with each integer in  integer
[—100, 100]
Bouncing B. float in [1.0,100.0], float in [1.0,100.0], integer in [1,20]  float
Bowling string in form of completed bowling card, with one integer
character per roll
Camel Case string of length [1,20] string
Coin Sums integer in [1,10000] 4 integers
Cut Vector vector of integers of length [1,20] with each integer in 2 vectors
[1,10000] of integers
Dice Game 2 integers in [1,1000] float
Find Pair vector of integers of length [2,20] with each integer in 2 integers
[—10000, 10000], integer in [—20000, 20000]
Fizz Buzz integer in [1, 1000000] string
Fuel Cost vector of integers of length [1,20] with each integer in integer
(6, 100000]
GCD 2 integers in [1, 1000000] integer
Ind. of Subs. 2 strings of length [1, 20] vector of
integers
Leaders vector of integers of length [0,20] with each integer in  vector of
[0, 1000] integers
Luhn vector of integers of length 16 with each integer in [1,9] integer
Mastermind 2 strings of length 4 made of B, R, W, Y, 0, G 2 integers
Middle Char. string of length [1,100] string
Paired Digits string of digits of length [2, 20] integer
Shopping List  vector of floats of length [1,20] with each float in float
[0.0,50.0], vector of floats of length [1, 20] with each float
in [0.0,100.0]. Both vectors must be the same length
Snow Day integer in [0,20], float in [0.0,20.0], float in [0.0,10.0], float
float in [0.0,1.0]
Solve Boolean  string of length [1,20] made of characters from Boolean
{t, £, |, &}
Spin Words string of length [0, 20] string
Square Digits  integer in [0, 1000000] string
Subs. Cipher 3 strings of length [0, 26] string
Twitter string of length [0, 200] string
Vector Dist. 2 vectors of floats of length [1,20] with each float in  float

[~100.0, 100.0]

359 the reference implementation.*
1. Basement (AoC) Given a vector of integers, return the first index such
that the sum of all integers from the start of the vector to that index
(inclusive) is negative. [35]

360
361
362
363
364
365
366
367
368

without vector /string processing. For more precise details of each problem, see

2. Bouncing Balls (CW) Given a starting height and a height after the
first bounce of a dropped ball, calculate the bounciness index (height of
first bounce / starting height). Then, given a number of bounces, use

4https://github.com/thelmuth/Clojush/releases/tag/psb2-v1.0
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Table 2 For each problem, the types of control flow that a program likely needs to
include to solve the problem. Iteration refers to some sort of iteration, looping, or
recursion. Vector includes an type of vector/string processing, considering individual
elements or characters. Conditional refers to conditional statements of some kind,
whether through standard if statements or other means.

9

Problem Iteration Vector Conditional
Basement X X X
Bouncing B. X

Bowling X X X
Camel Case X X X
Coin Sums

Cut Vector X X X
Dice Game

Find Pair X X X
Fizz Buzz X
Fuel Cost X X

GCD X X
Ind. of Subs. X X X
Leaders X X X
Luhn X X X
Mastermind X X X
Middle Char. X
Paired Digits X X X
Shopping List X X

Snow Day X

Solve Boolean X X X
Spin Words X X X
Square Digits X

Subs. Cipher X X

Twitter X
Vector Dist. X X

Total 20 16 16

the bounciness index to calculate the total distance that the ball travels
across those bounces. [36]

. Bowling (CW) Given a string representing the individual bowls in a
10-frame round of 10 pin bowling, return the score of that round. [37]

. Camel Case (CW) Take a string in kebab-case and convert all of the
words to camelCase. Each group of words to convert is delimited by "-",
and each grouping is separated by a space. For example: "camel-case
example-test-string" — "camelCase exampleTestString". [3§]

. Coin Sums (PE) Given a number of cents, find the fewest number of
US coins (pennies, nickles, dimes, quarters) needed to make that amount,
and return the number of each type of coin as a separate output. [39]

. Cut Vector (CW) Given a vector of positive integers, find the spot
where, if you cut the vector, the sum of the numbers on both sides are

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414



415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

10

10.

11.

12.

13.

14.

15.

16.

17.

Springer Nature 2021 BTEX template

Applying Genetic Programming to PSB2

either equal, or the difference in sums is as small as possible. Return the
two resulting subvectors as two outputs. [40]

Dice Game (PE) Peter has an n sided die and Colin has an m sided
die. If they both roll their dice at the same time, return the probability
that Peter rolls strictly higher than Colin. [41]

. Find Pair (AoC) Given a vector of integers, return the two elements

that sum to a target integer. [42]

. Fizz Buzz (CW) Given an integer x, return "Fizz" if  is divisible by

3, "Buzz" if x is divisible by 5, "FizzBuzz" if z is divisible by 3 and 5,
and a string version of x if none of the above hold. [43]

Fuel Cost (AoC) Given a vector of positive integers, divide each by 3,
round the result down to the nearest integer, and subtract 2. Return the
sum of all of the new integers. [44]

GCD [Greatest Common Divisor] (CW) Given two positive integers,
return the largest integer that divides each of the integers evenly. [45]

Indices of Substring (CW) Given a text string and a target string,
return a vector of integers of the indices at which the target appears in the
text. If the target string overlaps itself in the text, all indices (including
those overlapping) should be returned. [46]

Leaders (CW) Given a vector of positive integers, return a vector of
the leaders in that vector. A leader is defined as a number that is greater
than or equal to all the numbers to the right of it. The rightmost element
is always a leader. [47]

Luhn (CW) Given a vector of 16 digits, implement Luhn’s algorithm to
verify a credit card number, such that it follows the following rules: double
every other digit starting with the second digit. If any of the results are
over 9, subtract 9 from them. Return the sum of all of the new digits. [48]

Mastermind (HW) Based on the board game Mastermind. Given a
Mastermind code and a guess, each of which are 4-character strings con-
sisting of 6 possible characters, return the number of white pegs (correct
color, wrong place) and black pegs (correct color, correct place) the
codemaster should give as a clue.

Middle Character (CW) Given a string, return the middle character
as a string if it is odd length; return the two middle characters as a string
if it is even length. [49]

Paired Digits (AoC) Given a string of digits, return the sum of the
digits whose following digit is the same. [50]
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Shopping List (CW) Given a vector of floats representing the prices
of various shopping goods and another vector of floats representing the
percent discount of each of those goods, return the total price of the
shopping trip after applying the discount to each item. [51]

Snow Day (HW) Given an integer representing a number of hours and 3
floats representing how much snow is on the ground, the rate of snow fall,
and the proportion of snow melting per hour, return the amount of snow
on the ground after the amount of hours given. Each hour is considered a
discrete event of adding snow and then melting, not a continuous process.

Solve Boolean (CW) Given a string representing a Boolean expression
consisting of T, F, |, and &, evaluate it and return the resulting Boolean.
[52]

Spin Words (CW) Given a string of one or more words (separated by
spaces), reverse all of the words that are five or more letters long and
return the resulting string. [53]

Square Digits (CW) Given a positive integer, square each digit and
concatenate the squares into a returned string. [54]

Substitution Cipher (CW) This problem gives 3 strings. The first two
represent a cipher, mapping each character in one string to the one at the
same index in the other string. The program must apply this cipher to
the third string and return the deciphered message. [55]

Twitter (HW) Given a string representing a tweet, validate whether
the tweet meets Twitter’s original character requirements. If the tweet
has more than 140 characters, return the string "Too many characters".
If the tweet is empty, return the string "You didn’t type anything".
Otherwise, return "Your tweet has X characters", where the X is the
number of characters in the tweet.

Vector Distance (CW) Given two n-dimensional vectors of floats,
return the Euclidean distance between the two vectors in n-dimensional
space. [56]

6 Implementing PSB2

While Section 5 provides English-language descriptions of the 25 benchmark
problems, these are not sufficient to implement each problem in a new system.
Here we discuss the system-agnostic details for implementing these problems
in new synthesis systems.

For reasons discussed in Section 3, we have created datasets consisting

of large numbers of inputs and correct outputs for every problem [57].° The

50ur datasets follow the model of other machine learning datasets such as Penn ML
Benchmarks [58, 59] and the UCI ML Repository [60].
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dataset for each problem consists of a small number of hand-chosen inputs,
often addressing edge cases for the problem, and 1 million randomly-generated
inputs falling within the constraints of the problem’s inputs; the only exception
being the Coin Sums problem, which has 10,000 possible integer inputs. We
recommend that each different program synthesis run use a different set of
training data, composed of every one of the hand-chosen inputs and a random
sample of the randomly-generated inputs. The alternative method of using
the same fixed set of inputs for every run could happen to use a particularly
lucky (or unlucky) set of inputs, and across multiple experiments, could lead
to undesirable tuning to the particular data; using different randomized inputs
for each run avoids these issues. Our datasets will allow those implementing
PSB2 to simply sample the provided data, greatly decreasing the barrier to
using PSB2. The PSB2 datasets can be found permanently on Zenodo.® For
more information about distributions of inputs in randomly-generated inputs,
see the reference implementation, which was used to generate the datasets.”

In order to make it even easier to download and sample the PSB2 datasets,
we have created libraries that implement this functionality in Python® and
Clojure?. Each library can be easily installed using the host language’s pack-
age management system. Both libraries provide one function that downloads,
caches, and samples the dataset to produce training and test sets for a given
problem.

When using our provided datasets, one could sample different sizes of train-
ing and unseen test sets to fit a given experiment. Our recommendation, which
we use in the experiments, is to use 200 example cases for the training set
(including all hand-chosen inputs and the remaining inputs sampled randomly)
and 2000 for the unseen test set. However, some synthesis methods may need
smaller or larger training sets, and PSB2 can flexibly adapt to such systems.

Program synthesis methods that have been applied to PSB1 have used
varying methods for constraining the instruction set and other program syn-
tax. For example, some have used grammars [2, 3, 23, 25-28] while others
have used data-type categorized subsets of an instruction set [1, 18]. We do
not want to constrain what a reasonable approach to selecting instructions
may look like for any given program synthesis system. However, we also warn
against cherry-picking a small subset of instructions suspected of being useful
for a particular problem. Part of the difficulty of general program synthesis is
that a system must manage a large set of potentially useful instructions, find-
ing those relevant to a particular problem. We recommend employing a large
set of general-purpose instructions when using PSB2 to benchmark program
synthesis to best replicate the conditions of a real-world scenario.

Shttps://zenodo.org/record /4678739
"https://github.com/thelmuth/Clojush/releases/tag/psb2-v1.0
8 https://github.com/thelmuth/psb2-python
9https://github.com/thelmuth/psb2-clojure
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7 Best Practices for Benchmarking

There are many ways to use a suite of benchmark problems, ranging from
illustrating a synthesis method’s behavior to tuning algorithms and hyperpa-
rameters [61]. However, many uses require fair comparisons between systems
or methods in order to benchmark performance or other characteristics. Here
we make recommendations for benchmarking best practices in order to ensure
fair comparisons.

In order to compare performance, we need to ensure that the compared sys-
tems or methods are given similar computational resources. Arguments could
be made for a variety of budgets to limit execution, including processing time,
number of GP generations, program fitness evaluations (across all training
cases), program executions (per case), and number of individual instructions
executed. All of these methods have flaws, and all might be useful in certain
circumstances. However, we generally recommend using a fixed program exe-
cution budget to limit the number of generated program executions in a single
program synthesis run. This type of budget is more general than using a bud-
get of generations or fitness evaluations, as it allows systems to use different
population sizes or training set sizes yet still budget similar computation. On
the other hand, a budget of processing time or instruction executions may
be misleading when running experiments on different hardware or different
synthesis systems. We recommend using a budget of 60 million program execu-
tions; we allocate these to 200 training cases used to evaluate a population of
1000 individuals for 300 generations in our experimental GP runs, but other
allocations of the same executions would be reasonable.

In order to produce sufficient data on the performance of a stochastic search
such as GP, one needs to conduct multiple runs/trials of the system to get an
idea of the distribution of results. While we do not want to set a fixed number
of recommended trials, more are certainly better when considering the signif-
icance of the collected results. We expect that around 30 trials would be the
minimum acceptable for showing significant differences, though larger num-
bers of trials such as 100 or more would be more likely to produce significant
differences in statistical tests; we use 100 runs per problem in our experiments.

When evaluating the performance of a synthesis system on PSB2, we recom-
mend using success rate (the number of synthesis runs that produce a solution)
as the primary measure of performance, as was recommended in PSB1 [1]. For
the synthesis of software, generating programs that pass most, but not all,
of the training cases is not sufficient; for this reason success rate is a better
measure of performance than other metrics such as mean best fitness or mean
number of training cases passed. In particular, a solution must not only pass
all cases in the training set, but also all of the cases in the test set, to ensure
that it generalizes to unseen data. This avoids considering programs that over-
fit the training data, such as by memorizing the correct output to each input,
as solutions. We recommend sampling 2000 (or more) random inputs to create
the unseen test set.
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In order to determine whether differences in performance are statistically
significant, experimenters should use an appropriate significance test. In the
case of success rates measured in numbers of success and failure runs, a chi-
squared significance test is appropriate. When comparing multiple methods,
it is necessary to apply a correction to account for multiple comparisons, such
as the Holm-Bonferroni correction.

8 Experimental Methods and System
Parameters

In this section we will discuss the system-specific parameters and choices that
must be decided in order to use PSB2. In contrast with the previous sections
on general implementation and benchmarking considerations, the choices here
may differ considerably for different program synthesis systems. For our exper-
iments, we used PushGP; we will describe in general the decisions that must
be made and give our specific choices.

PushGP evolves programs in the language Push, a stack-based program-
ming language built specifically for use in genetic programming [62, 63]. Every
data type has its own stack, and each Push instruction acts by pushing and
popping various elements on and off the stacks. The output of each problem is
typically the top element on a particular stack. The interpreter executes pro-
grams that are themselves placed on an exec stack, allowing exec instructions
to manipulate control flow as well as the program itself as it runs. We provide
a reference implementation in Clojure of the PushGP system used to produce
our results, which includes each problem in PSB2.° This reference implemen-
tation is the same implementation of PushGP used in recent research using
PSB1, e.g. [7, 16, 17].

We discuss the general design of program synthesis instruction sets in
Section 6. For our PushGP experiments, we use the general process recom-
mended in PSB1, where, for each problem, we identify which data types
(corresponding to stacks) are relevant and include all implemented instruc-
tions that use those stacks [1]. In Tables 3 and 4, we present the data types
we chose to include for each problem, and the total number of instructions in
the instruction set. Every problem includes the exec, integer, and Boolean
types, since they are required for a variety of control flow instructions such as
iteration and conditionals. These large instruction sets contain a wide range
of general-purpose Push instructions, including some new instructions imple-
mented since PSB1, avoiding the cherry-picking of clearly useful instructions.
For the full list of instructions for each data type, see Appendix A.

Research utilizing PSB1 in using transfer-learned instruction sets showed
that the composition of the instruction set matters a great deal to problem-
solving performance [18]. While we do not use fully transfer-learned instruction
sets here, we do make use of one simple take-away: that including larger pro-
portions of input instructions and literals/ERCs improves performance. An

Ohttps://github.com/thelmuth/Clojush/releases/tag/psb2-v1.0
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646

Table 3 Instructions and data types used in our PushGP implementation of each 647
problem. The column “# Instructions” reports the number of instructions, terminals, and 648
ephemeral random constants (ERC) used for each problem. The middle columns show

which data types were used for each problem. For example, the Basement problem used all 649
instructions relevant to exec, integers, Booleans, and vectors of integers. The last column 650
lists the literals and ERCs used for the problem. Here, char literals are represented in 651

Clojure syntax, starting with a backslash, and strings are surrounded by double quotation 652
marks. The “Problems” row simply counts how many problems use each data type. The

“Instructions” row shows the number of Push instructions that primarily use each data 653
type; some use multiple types but are only counted once. 654
655
n
£ 656
] a0 0
g ¢ 7 657
g £ e 658
£ 3 5 T % 659
4] o § w 5 &
A T - - - 660
= g £ T S 4 = g ¢ Literals and ERCs 661
Problem # § E 2 @ 5 72 ¢ % (besides inputs)
662
I, -1, o, 1, 663
Basement 117 x  x X X integer ERC 664
Bouncing B. 127 x X X X 0.0, 1.0, 2.0
-\ VA 2, 069
\3, \4, \5, \6, \7, 666
\8, \9, 10, integer 667
Bowling 161 x x X X X ERC 668
\-, \space, visible
character ERC, 669
Camel Case 151 x x X X X string ERC 670
Coin Sums 86 x x X 0, 1, 5, 10, 25 671
Cut Vector 116 x x X X 1, o 672
Dice Game 125 x  x X X 0.0, 1.0
-1, 0, 1, 2, integer 673
Find Pair 120 x x x X ERC 674
"Fizz" s "Buzz" s 675
Fizz Buzz 118 x X X X "FizzBuzz", 0, 3, 5
0, 1, 2, 3, integer 676
Fuel Cost 117 x  x x X ERC 677
GCD 79 x X b'e integer ERC 678
Ind. of Subs. 184 x x X X x X i, ", o0, 1 679
Leaders 114 x x b'd X [1, vector ERC
0, 2, 9, 10, integer 680
Luhn 117 x X X X ERC 681
0, 1, \B, \R, \W, 682
Mastermind 123 x  x X X X \Y, \0, \G 633
"", 0, 1, 2, integer
Middle Char. 151 x x X X X ERC 684
0, char digit ERC, 685
Paired Digits 149 x x X X X integer ERC 686
0.0, 100.0, float 687
Shopping List 161 x x x X x  ERC
688
689

690



691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

Springer Nature 2021 BTEX template

16 Applying Genetic Programming to PSB2

Table 4 Continuation of Table 2

a
S 2 o
e £ <
S e e
o =} o o
7 ) g = & .
2 o o . 9 . %ﬂ 9 9 Literals and
= 9] et g 8 g T 13} o ERCs (besides
Problem # 5§ 5 < @ § 3 S s inputs)
o0, 1, -1, 0.0,
Snow Day 131 X X X X 1.0, -1.0
true, false, \t,
Solve Boolean 153  x x x X X \f, \I, \&
4, 5, \space,
visible
character ERC,
Spin Words 152 x X X X X string ERC
"0, 1, 2,
Square Digits 151 X X X X X integer ERC
Subs. Cipher 151  x X X X X "m,0
0, 140,
"Too many
characters",
"You didn’t type
anything", "your
tweet has " , "
Twitter 153 X X X X X characters"
Vector Dist. 160 X X X X b'd 1, 0
Problems 25 25 5 25 11 12 7 2
Instructions 29 33 45 21 21 47 34 34

explanation of this result is that most Push instructions decrease stack sizes
by consuming arguments and producing fewer return values, so increasing
inputs and literals creates more data on which instructions can act. We boost
the presence of input instructions and literals in the instruction set, making
input instructions fill 15% of the instruction set and literals/ERCs fill 5% of
the instruction set. The additional input instructions are evenly distributed
between each input for problems with multiple inputs, and literals/ERCs are
similarly evenly distributed for each listed in the last column of Tables 3 and 4.

For problems with multiple outputs, different synthesis systems will need
to make choices specific to the language of the synthesized programs. Initial
experiments in PushGP show that it achieves better results on multi-output
problems when using one output instruction per output. These output instruc-
tions are included in the instruction set for such problems and will always
appear in solution programs. An example of this is for Coin Sums, which has
4 outputs. We provide four corresponding output instructions, each of which
takes the top integer from the integer stack and stores it in a write-only reg-
ister for that output; further calls to an output instruction will overwrite this
output register.
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In order to define each problem for GP, we not only need the inputs and
correct outputs for each problem, but also how to calculate the error function
based on the correct output and a program’s output. Here we describe the
error functions we employed in our experiments, which we recommend for
any GP system implementing PSB2; other non-GP program synthesis systems
may require entirely different metrics. For each output data type, we use the
following standard error functions for problems outputting that data type:

¢ Integer or float: absolute value of the difference between program
output and correct output.
® Boolean: 0 for correct and 1 for incorrect output.
® String: Levenshtein string edit distance between the program output and
correct output.
® Vector of integers: add the difference in length between the program’s
output vector and the correct vector times 1000 to the absolute difference
between each integer and the corresponding integer in the correct vector.
The only exception is for the Indices of Substring problem, where we used
Levenshtein distance to compare vectors of integers, since it makes more sense
when comparing vectors of indices. In PushGP, some evolved programs will
not return values of a problem’s output data type; we give a penalty error
value specific to the problem when this occurs.

As has been shown to be effective at improving generalization, we use an
automatic simplification procedure on every evolved Push program that passes
all of the training cases before testing it on the test set [16].

Unlike for PSB1, we aimed to keep all system-specific parameters constant
between problems, increasing ease of use for both implementation and report-
ing of results. These parameters were chosen based on prior experience and
reasonable performance; we leave optimizing parameter settings as an open
research question. Other systems may choose to use different system-specific
parameters.

Our PushGP system uses linear Plush genomes that are initialized by gen-
erating lists of random instructions from the instruction set [15]. We list the
important parameters used in our experiments below:

e Maximum initial genome size: 250 genes
Maximum genome size: 500 genes
Population size: 1000
Maximum generations per run: 300
Maximum steps of the Push interpreter when executing one program:
2000
Parent selection: lexicase selection [64, 65]
Genetic operator: Uniform Mutation with Additions and Deletions
(UMAD), used to make 100% of children [17].
e UMAD addition rate: 0.09
As described in Section 7, using the exact same population size and generations
is not necessary for comparisons between systems; instead, we recommend
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Table 5 Results from 100 PushGP runs on each problem. “Succ.” gives the number of
runs that successfully find a program that passes every training case and perfectly passes a
set of 2000 unseen test cases. “Gen.” gives the proportion of solutions on the training data
that generalize to unseen data. “Size” gives the size of the smallest automatically
simplified solution that generalized to unseen data in any of our runs. “Time” is the
average number of seconds taken per generation.

Problem Succ. Gen. Size Time
Basement 1.00 16 250
Bouncing Balls 0.00 15 311
Bowling - - 206
Camel Case 1.00 20 95
Coin Sums 1.00 22 213
Cut Vector - - 194
Dice Game - 20 287
Find Pair 1.00 13 763
Fizz Buzz 2 0.96 15 281
Fuel Cost 5 1.00 9 305
GCD 0.67 9 198
Indices of Substring - 19 241
Leaders - - 302
Luhn - - 239
Mastermind - 126

0.86 10 547
1.00 12 250

Middle Character
Paired Digits

]
OHOOOOUROXMJTOOOOWOULOONKHFEOOHH

Shopping List - - 714
Snow Day 1.00 11 263
Solve Boolean 1.00 18 373
Spin Words - - 443
Square Digits - 13 435
Substitution Cipher 6 0.98 9 395
Twitter 3 0.74 22 527
Vector Distance - - 667

using a maximum budget of 60 million program executions regardless of other
settings.

9 Experimental Results

In order to give a baseline performance of the 25 problems in PSB2, we con-
ducted 100 PushGP runs on each problem using the experimental methods
described in Section 8. Additionally, in Section 10 we conduct a control study
using randomly generated programs.

We present success rates of our runs in Table 5. Out of the 25 problems
in PSB2, 13 were solved by PushGP. Of these 13, 3 of them had 50 or more
successes (Fuel Cost, Middle Character, and Substitution Cipher) and 2 others
had 25 or more successes (Fizz Buzz and Twitter). The remaining 8 had fewer
than 10 solutions, showing that they are solvable by GP but leave a lot of
room for improvement.

The second column in Table 5 gives the generalization rate of all evolved
solutions for problems on which PushGP produced at least one program that
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solved every training case. The generalization rate is calculated as the number
of solution programs that pass the unseen test set divided by the number of
solution programs that pass the training set. For most problems with training
set solutions, those solutions tended to generalize well with rates of 0.95 to 1.0.
The three problems with lower generalization rates, GCD, Middle Character,
and Twitter all had rates over 0.5. However, Bouncing Balls found 2 solutions
on the training data, but neither of them generalized to the test, which resulted
in 0 successful runs and a 0.00 generalization rate.

Another way of approximating the difficulty of these problems is by looking
at the size of the smallest solution program found for each problem. Smaller
solutions are easier for a program synthesis system to generate, simply because
they require assembling fewer instructions in the right order. Our results are
particular to Push program solutions, but should correlate with the sizes of
programs needed to solve these problems in other systems. In order to find each
size, we took each solution program and automatically simplified it to produce
a smaller equivalent program [16, 66]. Of these simplified programs, in Table 5
we report the smallest simplified solution size out of all simplified solutions to
each problem (including experiments we conduct in Section 11). We see that
the smallest solution size is 9 instructions for three problems, and one other
has a size of 10; three of these four problems also had the highest success rates
in PSB2. Many others have larger smallest solution sizes, though we note that
with the small sample sizes of solutions for some problems, smaller solutions
may exist. In comparison, [1] reported that 8 of the problems in PSB1 had a
smallest Push solution size less than 9, the minimum for PSB2. Along with
success rates, these sizes of smallest solutions give evidence that the problems
in PSB2 are more difficult than those in PSBI1.

The last column of Table 5 gives the average number of seconds per gener-
ation over all of the PushGP runs for the problem. Note that these runs were
conducted on two different computing clusters, each of which is composed of
heterogeneous machines, so these measurements should only be considered as
rough approximations of running time. To that end, we note that all problems
have generational running times within one order of magnitude of each other,
meaning there are not any exceptionally slow or fast problems.

10 Control Study: Random Search

We have shown GP capable of solving many of the problems in PSB2; however,
are program synthesis techniques necessary to solve these problems? In order
to answer this question, we conduct a control study that uses purely random
search. To do so, we generate a large number of random Push programs using
the same initialization procedure we use to create initial GP populations, with
the same range of initial program sizes. We test each random program on
training data to see if it solves the given benchmark problem.

To make a fair comparison with our GP study, we run the same number of
program executions with one “run” of random search. Our GP runs evaluate
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(boolean_yank exec_yankdup inl boolean_dup
inl integer_gte integer_flush in2 inl exec_y
(inl integer_yankdup integer_mod integer_swap))

(-1 exec_k (-8 exec_do*count -5 integer_flush in2 inl
exec_y (in2 integer_yankdup integer_mod integer_swap)))
Fig. 1 The two simplified Push solutions generated by random search to the GCD problem.

300,000 individuals, using a population size of 1000 over 300 generations. While
we could simply run 300,000 randomly generated programs on each of the 200
training cases for a problem, since the relative performance of each program
does not matter (since we are not using it to guide search), we only need to
know if each program perfectly passes all cases or not. As such, we can instead
execute each program on one case at a time, stopping and moving on to the
next program when it fails a single case. Since most random programs will fail
the first case they are tested on, we can evaluate nearly 200 times as many
random programs this way, equivalent to the 200 cases used for evaluating GP
programs. Thus nearly 60 million random programs can be tested with the
same execution budget as one GP run. We repeated this process 100 times per
problem, to give random search the same computation as GP.

Out of the 25 PSB2 problems, random search found only 2 solutions, both
to the GCD problem. The automatically simplified versions of those solution
programs are presented in Figure 1. Both programs have similar structure,
especially near the end, starting with exec_y, a version of the Y combinator.
In both programs, exec_y recursively calls the parenthesized code block, which
performs the heart of the Euclidean algorithm for finding a greatest common
denominator. The random generation of these two solutions is surprising; while
GCD is tied for the smallest simplified solution sizes in PSB2, all solutions
so far need at least 9 instructions, and it is not among the 5 problems solved
most often in our initial PushGP results (see Table 5). However, GCD does
have the smallest instruction set of the PSB2 problems, with 79 instructions
being significantly smaller than the instruction set for most other problems
(see Table 3). This smaller instruction set reduces the search space a bit, but
we would still expect it unlikely to randomly generate these solutions in the
huge combinatorial space.

Giving random search almost 200 times as many programs to consider as
GP, it has not produced a single solution to any of the PSB2 problems besides
GCD. This is no great surprise, since even the problems with the smallest
possible solutions need to line up at least 9 instructions in the right order to
solve the problem, producing a large combinatorial space when considering
that every problem uses a set of at least 79 instructions or more. These results
show that some type of program synthesis method, such as GP, is almost
always necessary to solve the problems in PSB2.
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11 Down-sampled Lexicase Selection

In order to demonstrate the utility of PSB2 for benchmarking GP, we have
conducted a set of PushGP runs using down-sampled lexicase selection [7, 8,
29, 30] to compare with standard lexicase selection. These runs additionally
assess the current state-of-the-art for PushGP, since down-sampled lexicase
has given better results than standard lexicase on the PSB1 problems.

In down-sampled lexicase selection, the population each generation is only
evaluated on a random subsample of the available training cases, with the
subsample being resampled each generation. We used a down-sampling level of
0.25, meaning only 50 out of 200 training cases are used each generation. By
down-sampling, less information is available for evaluating the performance of
each individual; however, each individual is executed fewer times. As such, we
can allow GP to run for more generations (or use a larger population size)
while maintaining the same execution budget. In our experiments here, we
increased the maximum number of generations from 300 to 1200, a change
proportional to the down-sampling level, maintaining the execution budget of
60 million programs. In previous work using PSB1, the drawback of having
less information to assess each program was more than compensated for by
increasing the number of individuals considered during search, and here we
assess whether that holds true for PSB2.

The results comparing down-sampled lexicase selection to standard lexicase
selection can be found in Table 6. Down-sampling improves results compared to
lexicase selection across the board, solving 17 of the 25 problems. In addition,
the success rates are the same or improved on every problem, with eight of
those improvements being significant using a chi-squared test. These results
show clear indications that down-sampled lexicase selection is an improvement
over standard lexicase selection on the PSB2 problems, aligning with previous
results [7, 8].

These results exemplify how PSB2 can be useful for benchmarking, in par-
ticular that different methods can produce significantly different results when
using the PSB2 problems. At this point, 18 out of 25 problems have been solved
at least once using PushGP: 17 of those with down-sampled lexicase selection,
and 1 additional in our initial exploratory PushGP runs (the Leaders prob-
lem). While we have no guarantees that the other 7 problems can be solved by
any program synthesis system, they provide useful targets for future research.

12 Related Work in Program Synthesis

We expect that PSB2 can be adopted by GP program synthesis practitioners
and others who used PSB1. Here, we would like to examine the place of PSB2
within the larger community of program synthesis, to see both where it can
be adopted and where there is room for cross-pollination of ideas. Program
synthesis encompasses a large and varied field; here, we cite representative
examples of these approaches without conducting a full literature review of
the field.
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967 Table 6 Number of successful runs comparing lexicase selection to down-sampled lexicase
selection. Underlined values indicate significant improvement of down-sampled lexicase

968 over lexicase using a chi-squared test with a 0.05 significance level. Lexicase never

969 produced better results than down-sampled lexicase. “Problems solved” counts the number

970 of problems each method solved at least once.

971
972 Problem Down-sampled Lexicase
973 Basement 2 1
974 Bouncing Balls 3 0
Bowling 0 0
975 Camel Case 4 1
976 Coin Sums 39 2
977 Cut Vector 0 0
978 Dice Game 1 0
Find Pair 20 4
979 Fizz Buzz 74 25
980 Fuel Cost 67 50
981 GCD 20 8
982 Indices of Substring 4 0
Leaders 0 0
983 Luhn 0 0
984 Mastermind 0 0
985 Middle Character 79 57
986 Paired Digits 17 8
Shopping List 0 0
987 Snow Day 7 4
988 Solve Boolean 5 5
989 Spin Words 0 0
990 Square Digits 2 0
Substitution Cipher 86 61
991 Twitter 52 31
992 Vector Distance 0 0
993
994 Problems solved 17 13
995

996 Programming by ezample (PBE) generally includes any method where the
997 specification of the intended program is given by input/output examples, as is
998 the case with PSB2. Most GP methods, including those mentioned in Section 2,
999 use PBE. That said, many non-GP PBE synthesis methods have been proposed
1000 [67-73]. Many of these use non-evolutionary search over the space of possi-
1001 ble programs, while others use satisfiability modulo theories (SMT) solvers to
1002 generate programs. In either case, the systems in this space are typically lim-
1003 ited to generating programs using small domain-specific languages over one
1004 or two datatypes (such as manipulating strings or vectors), both limitations
1005 that would make them difficult to apply to every problem in PSB2. However,
1006 we encourage the exchange of ideas between these fields, and hope that some
1007 non-GP PBE methods can be applied to PSB2 soon.

1008 Natural language specifications, for example a docstring of a desired func-
1009 tion, give a natural but often loose specification of the intended functionalty.
1010 However, program synthesis based on natural language specifications could

1011 prove very useful if the desired programs can be accurately synthesized.
1012
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Recently, advances in language modeling have led to methods based on pro-
ducing abstract syntax trees [74, 75|, using component-based synthesis [76],
or that simply produce sequences of source code strings [77, 78]. Some of
these methods combine natural language specifications with PBE [74, 76].
While some of these methods have only been benchmarked on creating small,
domain-specific programs [74-76], those producing source code generate high-
level code [77, 78]. These methods could be tested directly on PSB2’s problem
descriptions given in Section 5.

Some methods define the problem to be solved using a formal specifica-
tion, such as a logic formula or a reference implementation [79-83]. These
methods also require either a sketch of the desired program with holes to be
filled in [79] or a problem-specific syntax defined by a grammar [80-83]. For
example, Syntax-Guided Synthesis (SyGuS) problems require formal specifica-
tions as well as a context-free grammar describing allowable syntax [81]. These
methods have been tested on domain-specific benchmark tasks similar to those
often used for PBE, such as those manipulating one of the following: integers,
strings, bit vectors, or Boolean circuits. One interesting approach combines
GP and sketching, where GP creates the partial program and then a SMT
solver is used to fill in the holes [70]. Another combines GP with SMT solvers
to decompose problems into smaller parts [83]. Any of these methods would
require the creation of formal specifications of the PSB2 problems, instead of
using examples of the desired behavior.

13 Conclusions

We have presented PSB2, the second generation of general program synthesis
benchmark problems. We discussed the past research that has used PSBI,
the lessons learned from years of its use, and why we need a new benchmark
suite. We then provided the sources and problems that make up PSB2, giving
details of how to implement and use it in new systems. Finally, we presented
experimental results showing the increased difficulty of the problems of PSB2
compared to PSB1, and offer comparisons to other synthesis techniques.

We anticipate that using other GP systems (such as those we mention
in Section 2 that have used PSB1) to produce initial results on PSB2 will
provide a useful comparison to the results with PushGP we have presented
here. Research that has compared these different GP methods on the problems
in PSB1 has shown them to perform better or worse on different problems,
likely due to their different GP representations and instruction sets [3, 14, 33];
we would expect to see differences in abilities on the problems in PSB2 as
well. Additionally, we encourage the application of non-evolutionary automatic
program synthesis methods to these problems, to better gauge the strengths
and weaknesses of these different methods.

PSB2, like PSB1 before it, focuses on core programming methods and data
types. As program synthesis systems become more complex and encounter
real-world scenarios, they may need to utilize more complex resources such
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1059 as concurrency or database manipulation. Additionally, they may need to
1060 manipulate problem-specific data types or library-specific functions (a proof-
1061 of-concept of one approach to these problems was given using code-building
1062 GP [21]). We imagine that new benchmark problems that address these
1063 challenges will need to be developed in the future.

1064 The lessons learned from PSB1 will make it easier to implement PSB2 in
1065 new program synthesis systems, increasing adoption in the community and fur-
1066 thering the field. PSB2 will provide a new target for program synthesis systems,
1067 stretching their capabilities and moving the field toward the types of problems
1068 that may be encountered in real-world program synthesis applications.

1069
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182 Appendix A Push Instructions

1077 Our experiments using PushGP use instruction sets based on the data types
1078 relevant to the problem, as discussed in Section 8. Tables Al and A2 con-
1079 tain the Push instructions for each of the types referenced in Tables 3 and 4.
1080 Experiments using PSB2 do not need to match this instruction set exactly, and
1081 indeed for non-Push program synthesis systems, there may be wildly different
1082 instruction sets. However, we include the exhaustive list of instructions that
1083 we used in order to give the full details of the system and allow comparisons

1084 with instruction sets in other systems.
1085
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The Push instructions included in our experiments.

Data
Type

Instructions

exec

integer

float

Boolean

char

string

exec_do*count, exec_do*range, exec_do*times, exec_do*vector_float,
exec_do*vector_integer, exec_do*while, exec_dup, exec_dup-items,
exec_dup_times, exec_empty, exec_eq, exec_flush, exec_if, exec_k, exec_noop,
exec_pop, exec_rot, exec-s, exec_shove, exec_stackdepth, exec_string_iterate,
exec_swap, exec_when, exec_while, exec.y, exec_yank, exec_yankdup, tag,
tagged

integer_abs, integer_add, integer_dec, integer_div, integer_dup, inte-
ger_dup_items, integer_dup_times, integer_empty, integer_eq, integer_flush,
integer_fromboolean, integer_fromchar, integer_fromfloat, integer_fromstring,
integer_gt, integer_gte, integer_inc, integer_lt, integer_lte, integer_max, inte-
ger_min, integer_mod, integer_mult, integer_negate, integer_pop, integer_pow,
integer_rot, integer_shove, integer_stackdepth, integer_sub, integer_swap,
integer_yank, integer_yankdup

float_abs, float_add, float_arccos, float_arcsin, float_arctan, float_ceiling,
float_cos, float_dec, float_div, float_dup, float_dup_items, float_dup_times,
float_empty, float_eq, float_floor, float_flush, float_fromboolean,
float_fromchar, float_frominteger, float_fromstring, float_gt, float_gte,
float_inc, float_logl0, float_log2, float_lt, float_lte, float_max, float_min,
float_mod, float_mult, float_negate, float_pop, float_pow, float_rot, float_shove,
float_sin, float_sqrt, float_square, float_stackdepth, float_sub, float_swap,
float_tan, float_yank, float_yankdup

boolean_and, boolean_dup, boolean_dup_items, boolean_dup_times,
boolean_empty, boolean_eq, boolean_flush, boolean_fromfloat,
boolean_frominteger, boolean_invert_first_then_and,
boolean_invert_second_then_and, boolean_not, boolean_or, boolean_pop,
boolean_rot, boolean_shove, boolean_stackdepth, boolean_swap, boolean_xor,
boolean_yank, boolean_yankdup

char_allfromstring, char_dup, char_dup-items, char_dup_times, char_empty,
char_eq, char_flush, char_fromfloat, char_frominteger, char_isdigit,
char_isletter, char_iswhitespace, char_lowercase, char_pop, char_rot,
char_shove, char_stackdepth, char_swap, char_uppercase, char_yank,
char_yankdup

string_butlast, string_capitalize, string_concat, string_conjchar,
string_contains, string_containschar, string_dup, string_dup_items,
string_dup-times, string_empty, string_emptystring, string_eq,
string_first, string_flush, string_fromboolean, string_fromchar,
string_fromfloat, string_frominteger, string_includes, string_indexof,
string_indexofchar, string_last, string_length, string_lowercase,
string_nth, string_occurrencesofchar, string_parse_to_chars, string_pop,
string_removechar, string replace, string replacechar, string replacefirst,
string_replacefirstchar, string rest, string reverse, string rot, string_setchar,
string_shove, string_sort, string_split, string stackdepth, string substring,
string_swap, string_take, string_uppercase, string_yank, string_yankdup
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1151 Table A2 Continuation of Table Al

1152
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1190
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1192
1193
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1196

Data Instructions

Type

vector vector_integer_butlast, vector_integer_concat, vector_integer_conj, vec-

of tor_integer_contains, vector_integer_dup, vector_integer_dup_-items,

integers vector_integer_dup_times, vector_integer_empty, vector_integer_emptyvector,
vector_integer_eq, vector_integer_first, vector_integer_flush, vec-
tor_integer_indexof, vector_integer_last, vector_integer_length,
vector_integer_nth, vector_integer_occurrencesof, vector_integer_pop,
vector_integer_pushall, vector_integer_remove, vector_integer_replace,

vector_integer_replacefirst, vector_integer_rest, vector_integer_reverse, vec-
tor_integer_rot, vector_integer_set, vector_integer_shove, vector_integer_sort,
vector_integer_stackdepth, vector_integer_subvec, vector_integer_swap,
vector_integer_take, vector_integer_yank, vector_integer_yankdup

vector vector_float_butlast, vector_float_concat, vector_float_conj, vec-
of tor_float_contains, vector_float_dup, vector_float_dup_items, vec-
floats tor_float_dup_times, vector_float_empty, vector_float_emptyvector,

vector_float_eq, vector_float_first, vector_float_flush, vector_float_indexof, vec-
tor_float_last, vector_float_length, vector_float_nth, vector_float_occurrencesof,
vector_float_pop, vector_float_pushall, vector_float_remove, vec-
tor_float_replace, vector_float_replacefirst, vector_float_rest,
vector_float_reverse, vector_float_rot, vector_float_set, vector_float_shove, vec-
tor_float_sort, vector_float_stackdepth, vector_float_subvec, vector_float_swap,
vector_float_take, vector_float_yank, vector_float_yankdup
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